D. The measure of average kinetic energy of molecules of a substance
in the service producing sector
The distance covered by the body is 114.3 m
Explanation:
The work done by a force exerted on an object is given by

where
F is the magnitude of the force
d is the displacement of the object
is the angle between the direction of the force and of the displacement
For the object in this problem, we have
F = 350 N is the force applied
is the work done
if we assume that the force is applied parallel to the motion of the object
Solving for d, we find the distance covered by the object:

Learn more about work:
brainly.com/question/6763771
brainly.com/question/6443626
#LearnwithBrainly
To solve this problem it is necessary to apply the kinematic equations of motion and Hook's law.
By Hook's law we know that force is defined as,

Where,
k = spring constant
x = Displacement change
PART A) For the case of the spring constant we can use the above equation and clear k so that




Therefore the spring constant for each one is 11876.92/2 = 5933.46N/m
PART B) In the case of speed we can obtain it through the period, which is given by

Re-arrange to find \omega,



Then through angular kinematic equations where angular velocity is given as a function of mass and spring constant we have to




Therefore the mass of the trailer is 4093.55Kg
PART C) The frequency by definition is inversely to the period therefore



Therefore the frequency of the oscillation is 0.4672 Hz
PART D) The time it takes to make the route 10 times would be 10 times the period, that is



Therefore the total time it takes for the trailer to bounce up and down 10 times is 21.4s