Answer:
a) periodic (N = 1)
b) not periodic
c) not periodic
d) periodic (N = 8)
e) periodic (N = 16)
Explanation:
For function to be a periodic: f(n) = f(n+N)
![a) x[n]=sin(\frac{8\pi}{2}n+1)\\\\sin(\frac{8\pi}{2}n+1)=sin(4\pi n+1)](https://tex.z-dn.net/?f=a%29%20x%5Bn%5D%3Dsin%28%5Cfrac%7B8%5Cpi%7D%7B2%7Dn%2B1%29%5C%5C%5C%5Csin%28%5Cfrac%7B8%5Cpi%7D%7B2%7Dn%2B1%29%3Dsin%284%5Cpi%20n%2B1%29)
It is periodic with fundamental period N = 1
![b) x[n]=cos(\frac{n}{8} -\pi)\\\\\frac{1}{8} N=2\pi k](https://tex.z-dn.net/?f=b%29%20x%5Bn%5D%3Dcos%28%5Cfrac%7Bn%7D%7B8%7D%20-%5Cpi%29%5C%5C%5C%5C%5Cfrac%7B1%7D%7B8%7D%20N%3D2%5Cpi%20k)
N must be integer. So it is nor periodic
![c) x[n]=cos(\frac{\pi}{8} n^2)\\\\cos(\frac{\pi}{8} (n+N)^2)=cos(\frac{\pi}{8} (n^2+N^2+2nN)\\\\N^2 = 16 \:\:or\:\:2nN=16](https://tex.z-dn.net/?f=c%29%20x%5Bn%5D%3Dcos%28%5Cfrac%7B%5Cpi%7D%7B8%7D%20n%5E2%29%5C%5C%5C%5Ccos%28%5Cfrac%7B%5Cpi%7D%7B8%7D%20%28n%2BN%29%5E2%29%3Dcos%28%5Cfrac%7B%5Cpi%7D%7B8%7D%20%28n%5E2%2BN%5E2%2B2nN%29%5C%5C%5C%5CN%5E2%20%3D%2016%20%5C%3A%5C%3Aor%5C%3A%5C%3A2nN%3D16)
Since N is dependent to n. So it is not periodic.
![d) x[n]=cos(\frac{\pi }{2} n) cos(\frac{\pi }{4} n)\\\\x[n] = \frac{1}{2} cos(\frac{3\pi }{4} n) + \frac{1}{2} cos(\frac{\pi }{4} n)\\\\N_1=8\:\:and\:\:N_2=8\\](https://tex.z-dn.net/?f=d%29%20x%5Bn%5D%3Dcos%28%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%20n%29%20cos%28%5Cfrac%7B%5Cpi%20%7D%7B4%7D%20%20n%29%5C%5C%5C%5Cx%5Bn%5D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20cos%28%5Cfrac%7B3%5Cpi%20%7D%7B4%7D%20n%29%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20cos%28%5Cfrac%7B%5Cpi%20%7D%7B4%7D%20n%29%5C%5C%5C%5CN_1%3D8%5C%3A%5C%3Aand%5C%3A%5C%3AN_2%3D8%5C%5C)
So it is periodic with fundamental period N = 8.
![e) x[n]=2cos(\frac{\pi }{4} n)+sin(\frac{\pi }{8} n)-2cos(\frac{\pi }{2} n+\frac{\pi }{6} )\\\\N_1=8\:\:and\:\:N_2=16\:\:and\:\:N_3=4](https://tex.z-dn.net/?f=e%29%20x%5Bn%5D%3D2cos%28%5Cfrac%7B%5Cpi%20%7D%7B4%7D%20%20n%29%2Bsin%28%5Cfrac%7B%5Cpi%20%7D%7B8%7D%20n%29-2cos%28%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20n%2B%5Cfrac%7B%5Cpi%20%7D%7B6%7D%20%29%5C%5C%5C%5CN_1%3D8%5C%3A%5C%3Aand%5C%3A%5C%3AN_2%3D16%5C%3A%5C%3Aand%5C%3A%5C%3AN_3%3D4)
So it is periodic with N = 16.
Answer:
a. Use datum on shaft
b. Use datum on hex flat
c. Use datum on face below the head
d. Use datum on shaft
When these datum are used, they will prevent translation and rotation along axis which they act.
Answer:
For a Singular matrix, the determinant must be equivalent to 0.
Explanation:
A matrix is a rectangular array in which elements are arranged in rows and columns.
Each square matrix has a determinant. The determinant is a numerical idea that has a fundamental function in finding the arrangement just as investigation of direct conditions. For a Singular matrix, the determinant must be equivalent to 0.
Answer:
It will limit the materials for your bridge which could cause damage to your bridge
Explanation:
Answer:
Explanation:
internal combustion engine.