Answer:
B. Anions are formed when an atom loses electrons.
It would begin osmosis on it. If you put it in vinegar for example water would begin to seep through the membrane.
Answer:
1.The electonic configuration of elements and their position in the periodic table are related to each other, From the electronic configuration of the elements, we can determine the period and the group to which the element belongs
Let's consider, sodium with atomic number 11 and k, l, and M shells have 2,8,and 1 electrons. since, there are 3 principal energy levels so we concluded sodium belongs to third period M Shell(valance shell) has only 1 electrons. so sodium belongs to group 1.
2. Entire D-block elements are known as Transition Elements.
3. Group 17 is the halogen group.
4. Main group of elements are...... 1,2, and 13 through 18.
5. Group 18 are the noble gas elements .
12. a). Smaller
b). Increases
c). More reactive
d). Softer
7. a). k › Ca › Ge › Br › Kr
b). Ra › Ba › Sr › Ca › Mg › Be
9. a). Ca(calcium) ion is smaller.
b). Cl(chlorine) atom is smaller.
c). Mg(magnesium) atom is smaller.
10. a). F(fluorine)
b). Sr(strontium)
c). Pb(lead)
d). At(Astatine)
Answer:
4.1 atm = 3,116 mmHg = 415.4 kPa
Explanation:
According to Boyle's law, as volume is increased the pressure of the gas is decreased. That can be expressed as:
P₁ x V₁= P₂ x V₂
Where P₁ and V₁ are the initial pressure and volume respectively, and P₂ and V₂ are final pressure and volume, respectively.
From the problem, we have:
V₁= 50.0 L
V₂= 68.0 L
P₂= 3.0 atm
Thus, we calculate the initial pressure as follows:
P₁= (P₂ x V₂)/V₁= (3.0 atm x 68.0 L)/(50.0 L)= 4.08 atm ≅ 4.1 atm
To transform to mmHg, we know that 1 atm= 760 mmHg:
4.1 atm x 760 mmHg/1 atm = 3,116 mmHg
To transform to kPa we use: 1 atm= 101.325 kPa
4.1 atm x 101.325 kPa = 415.4 kPa