Answer:
12.7 m
Explanation:
The following data were obtained from the question:
Initial velocity (u) = 56.7 Km/hr
Maximum height (h) =..?
First, we shall convert 56.7 Km/hr to m/s. This can be obtained as follow:
Initial velocity (m/s) = 56.7 x 1000/3600
Initial velocity (m/s) = 15.75 m/s
Next, we shall determine the time taken to get to the maximum height. This can be obtained as follow:
Initial velocity (u) = 15.75 m/s
Final velocity (v) = 0 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
v = u – gt (since the ball is going against gravity)
0 = 15.75 – 9.8 × t
Rearrange
9.8 × t = 15.75
Divide both side by 9.8
t = 15.75/9.8
t = 1.61 secs.
Finally, we shall determine the maximum height as follow
h = ½gt²
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) = 1.61 secs.
Height (h) =..?
h = ½gt²
h = ½ × 9.8 × 1.61²
h = 4.9 x 1.61²
h = 12.7 m
Therefore, the maximum height reached by the ball is 12.7 m
Light is a form of electromagnetic radiation with a wavelength which can be detected by the human eye. It is a small part of the electromagnetic spectrum and radiation given off by stars like the sun. Animals can also see light. The study of light, known as optics, is an important research area in modern physics.
As one moves farther and farther from the Sun, the distance between adjacent planets is greater.
Answer:
6j
uuuuuuus Jessica unmold sun wu disco if u duh tastes jealous happens