Answer:
Final velocity of electron,
Explanation:
It is given that,
Electric field, E = 1.55 N/C
Initial velocity at point A, 
We need to find the speed of the electron when it reaches point B which is a distance of 0.395 m east of point A. It can be calculated using third equation of motion as :
........(1)
a is the acceleration, 
We know that electric force, F = qE

Use above equation in equation (1) as:


v = 647302.09 m/s
or

So, the final velocity of the electron when it reaches point B is
. Hence, this is the required solution.
V = IR
Where v is voltage I is current and r is resistance
So
V = 9
R = 12
V/R = I
9/12 = I
I = 0.75 A
The best answer would be a "non-directional hypothesis"
Answer:
The system prevents a consumer from accruing debt via electricity use, as it only allows the customer to use electricity which has been paid for upfront.
this gives the advantage of not allowing the consumer to rack up debt
the disadvantage for the consumer comes when they cannot afford to prepay in a time of financial difficulty - as the system now renders them as having no electricity as well as no money