Answer:
0.04 mm Hg / mL / min .
Explanation:
Arterial pressure = 120 mm Hg
right atrial pressure = 0 mm Hg
Drop in pressure due to peripheral resistance = 120 mm Hg
volume of cardiac output per minute = 3000 mL/min
total peripheral resistance
= 120 / 3000 mm Hg / mL / min
= 0.04 mm Hg / mL / min .
The negative sign on the acceleration is only a vector quantity that means the object is accelerating to the left. Hence, we can only focus on it magnitude which is 4 m/s^2. Acceleration is the change in velocity over time. The change in velocity must be 24 m/s - 0 m/s, if you want the object to stop. Therefore,
a = (v2 - v1)/t
4 = (24 - 0)t
t = 6 seconds
The object will stop after 6 seconds.
Answer:
a) 75.5 degree relative to the North in north-west direction
b) 309.84 km/h
Explanation:
a)If the pilot wants to fly due west while there's wind of 80km/h due south. The north-component of the airplane velocity relative to the air must be equal to the wind speed to the south, 80km/h in order to counter balance it
So the pilot should head to the West-North direction at an angle of

relative to the North-bound.
b) As the North component of the airplane velocity cancel out the wind south-bound speed. The speed of the plane over the ground would be the West component of the airplane velocity, which is

Answer:
15 N
Explanation:
According to Newton's third law of motion, to every action, there is an equal and opposite reaction. This reaction is equal in magnitude to the force acting but in an opposite direction.
Now, if the book weighs 15 N, an opposite equal force will be: N = -15 N
But the magnitude of this will be the absolute value which is 15N.
Answer:

Explanation:
We first identify the elements of this simple harmonic motion:
The amplitude A is 8.8cm, because it's the maximum distance the mass can go away from the equilibrium point. In meters, it is equivalent to 0.088m.
The angular frequency ω can be calculated with the formula:

Where k is the spring constant and m is the mass of the particle.
Now, since the spring starts stretched at its maximum, the appropriate function to use is the positive cosine in the equation of simple harmonic motion:

Finally, the equation of the motion of the system is:
or
