Answer:
Mitochondria are abundantly present in mammalian cells. Their fraction varies from tissue to tissue, ranging from <1% (volume) in white blood cells to 35% in heart muscle cells. However, mitochondria should not be thought of as single entities, but rather a dynamic network that continuously undergoes fission and fusion processes. In skeletal muscle, mitochondria exist as a reticular membrane network. The subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria are located in distinct subcellular regions, and they possess subtle differences in biochemical and functional properties that are characterized by their anatomical locations. SS mitochondria lie directly beneath the sarcolemmal membrane and the IMF mitochondria are located in close contact with the myofibril. Their different properties are likely to influence their capacity for adaptation. SS mitochondria account for 10-15% of the mitochondrial volume and this population has been shown to be more susceptible to adaptation than the IMF mitochondria. However, the IMF mitochondria were found to have higher rates of protein synthesises, enzyme activities and respiration (1).
Explanation:
The equations of reaction occurring in the tubes are as follows:
- 2 MnO₄⁻ + 6 Br⁻ + 8 H⁺ → 2 MnO₂ + 3 Br₂ + 4 H₂O
- 2 MnO₄⁻ + 6 I⁻ + 8 H⁺ → 2 MnO₂ + 3 I₂ + 4 H₂O
- No reaction
- 2 Fe³⁺ + 2 I⁻ → 2 Fe²⁺ + I₂
<h3>What are the reactions occurring in the tubes?</h3>
The reactions occurring in the tubes are redox reactions.
Based on the table the equations of reaction are as follows:
- 2 MnO₄⁻ + 6 Br⁻ + 8 H⁺ → 2 MnO₂ + 3 Br₂ + 4 H₂O
- 2 MnO₄⁻ + 6 I⁻ + 8 H⁺ → 2 MnO₂ + 3 I₂ + 4 H₂O
- No reaction
- 2 Fe³⁺ + 2 I⁻ → 2 Fe²⁺ + I₂
In conclusion, redox reaction are reactions in which electrons are transferred.
Learn more about redox reactions at: brainly.com/question/26750732
#SPJ1
Answer:
take 75 gm or it will be overdose
Number of moles : n₂ = 1.775 moles
<h3>Further explanation</h3>
Given
Moles = n₁ = 1.4
Volume = V₁=22.4 L
V₂=28.4 L
Required
Moles-n₂
Solution
Avogadro's hypothesis, at the same temperature and pressure, the ratio of gas volume will be equal to the ratio of gas moles
The ratio of gas volume will be equal to the ratio of gas moles

Input the values :
n₂ = (V₂ x n₁)/V₁
n₂ = (28.4 x 1.4)/22.4
n₂ = 1.775 moles
Answer:
-209 kJ
Explanation:
I did the math. You're welcome ;)