Answer:
Explanation:
Its the 2nd one on the left (the bolded one)
Answer
Assuming
east is the positive x direction
north is the positive y direction
initial velocity , u = 19 j m/s
a)
acceleration , a = 1.6 j m/s^2
Using first equation of motion
v = u + a × t
v = 19 + 5.6× 1.6
v = 28 j m/s
the velocity of the car after 5.6 s is 28 m/s north
b)
acceleration , a = -1.5 j m/s^2
Using first equation of motion
v = u + a × t
v = 19 - 5.6 ×1.5
v = 10.6 j m/s
the velocity of the car after 5.6 s is 10.6 m/s north
Answer:
1.4 m/s
Explanation:
From the question given above, we obtained the following data:
Initial Displacement (d1) = 0.9 m
Final Displacement (d2) = 1.6 m
Initial time (t1) = 1.5 secs
Final time (t2) = 2 secs
Velocity (v) =..?
The velocity of an object can be defined as the rate of change of the displacement of the object with time. Mathematically, it can be expressed as follow:
Velocity = change of displacement /time
v = Δd / Δt
Thus, with the above formula, we can obtain the velocity of the car as follow:
Initial Displacement (d1) = 0.9 m
Final Displacement (d2) = 1.6 m
Change in displacement (Δd) = d2 – d1 = 1.6 – 0.9
= 0.7 m
Initial time (t1) = 1.5 secs
Final time (t2) = 2 secs
Change in time (Δt) = t2 – t1
= 2 – 1.5
= 0.5 s
Velocity (v) =..?
v = Δd / Δt
v = 0.7/0.5
v = 1.4 m/s
Therefore, the velocity of the car is 1.4 m/s
Answer:0.114 C
Explanation:
Given
Total 4.7 C is distributed in two spheres
Let
and
be the charges such that

and Force between charge particles is given by



put the value of 




thus 
Answer:
The track's angular velocity is W2 = 4.15 in rpm
Explanation:
Momentum angular can be find
I = m*r^2
P = I*W
So to use the conservation
P1 + P2 = 0
I1*W1 + I2*W2 = 0
Solve to w2 to find the angular velocity
0.240kg*0.30m^2*0.79m/s=-1kg*0.30m^2*W2
W2 = 0.435 rad/s
W2 = 4.15 rpm