1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mojhsa [17]
3 years ago
11

Feathers and a bowling ball are dropped in a vacuum, airless environment. Which one will hit the ground first?

Physics
1 answer:
Reil [10]3 years ago
8 0

Answer: at the same time

Explanation: in a vacuum, there isnt air, right? so there isnt gravity pushing down on the heavier object, so they will both land at the same time.

good? :)

You might be interested in
A swimming pool, 20.0 m ? 12.5 m, is filled with water to a depth of 3.71 m. if the initial temperature of the water is 18.5°c,
Semenov [28]
1askjjjohikjgnvrfntttkmvvvvvvvfdrtgfgfgfgffdxxsd

7 0
3 years ago
4 This question has several parts that must be completed sequentially. If you skip a part of the question, you will not receive
zubka84 [21]

Answer:at 21.6 min they were separated by 12 km

Explanation:

We can consider the next diagram

B2------15km/h------->Dock

|

|

B1 at 20km/h

|

|

V

So by the time B1 leaves, being B2 traveling at constant 15km/h and getting to the dock one hour later means it was at 15km from the dock, the other boat, B1 is at a distance at a given time, considering constant speed of 20km/h*t going south, where t is in hours, meanwhile from the dock the B2 is at a distance of (15km-15km/h*t), t=0, when it is 8pm.

Then we have a right triangle and the distance from boat B1 to boat B2, can be measured as the square root of (15-15*t)^2 +(20*t)^2. We are looking for a minimum, then we have to find the derivative with respect to t. This is 5*(25*t-9)/(sqrt(25*t^2-18*t+9)), this derivative is zero at t=9/25=0,36 h = 21.6 min, now to be sure it is a minimum we apply the second derivative criteria that states that if the second derivative at the given critical point is positive it means here we have a minimum, and by calculating the second derivative we find it is 720/(25 t^2 - 18 t + 9)^(3/2) that is positive at t=9/25, then we have our answer. And besides replacing the value of t we get the distance is 12 km.

3 0
3 years ago
Michael Jordan, el célebre basquetbolista, ganó el torneo de clavadas de la NBA en 1988. Para lograr la hazaña saltó 1.35 metros
kozerog [31]

(a) 0.40 s

First of all, let's find the initial speed at which Jordan jumps from the ground.

The maximum height is h = 1.35 m. We can use the following equation:

v^2-u^2=2gh

where

v = 0 is the velocity at the maximum height

u is the initial velocity

g=-9.8 m/s^2 is the acceleration of gravity

Solving for u,

u=\sqrt{-2gh}=\sqrt{-2(-9.8)(1.35)}=5.14 m/s

The time needed to reach the maximum height can now be found by using the equation

v=u+gt

Solving for t,

t=\frac{v-u}{g}=\frac{0-5.14}{-9.8}=0.52s

Now we can find the velocity at which Jordan reaches a point 20 cm below the maximum height, so at a height of

h' = 1.35 - 0.20 = 1.15 m

Using again the equation

v'^2-u^2=2gh'

we find

v'=\sqrt{u^2+2gh}=\sqrt{5.14^2+2(-9.8)(1.15)}=1.97 m/s

And the corresponding time is

t'=\frac{v'-u}{g}=\frac{1.97-5.14}{-9.8}=0.32s

So the time to go from h' to h is

\Delta t = t-t'=0.52-0.32=0.20 s

And since we have also to take into account the fall down (after Jordan reached the maximum height), which is symmetrical, we have to multiply this time by 2 to get the total time of permanence in the highest 20 cm of motion:

\Delta t=2\cdot 0.20 = 0.40 s

(b) 0.08 s

This part is easier since we need to calculate only the velocity at a height of h' = 0.20 m:

v'^2-u^2=2gh'

v'=\sqrt{u^2+2gh}=\sqrt{5.14^2+2(-9.8)(0.20)}=4.74 m/s

And the corresponding time is

t'=\frac{v'-u}{g}=\frac{4.74-5.14}{-9.8}=0.04s

So this is the time needed to go from h=0 to h=20 cm; again, we have to take into account the motion downwards, so we have to multiply this by 2:

\Delta t = 2\cdot 0.04 =0.08 s

8 0
4 years ago
The force of gravitation between two spherical bodies is Gm1 m2 /r2, where r is separation between their dash
AnnZ [28]

Explanation:

F = Gm1m2/r^2

kya nikalna hai bhai isme

6 0
3 years ago
Read 2 more answers
Ixchelt burns her tongue when she takes a sip of hot coffee from her mug. Which part of this example represents heat?
bekas [8.4K]

Answer:

Explanation:

"The thermal energy moving from her coffee to the tongue" represent the heat.

Here coffee is at high temperature while tongue is at low temperature, when Ixchelt tongue make contact with coffee then thermal energy of coffee is absorbed by tongue and tongue gets burned.

As heat always from high Potential to low that is why heat is absorbed by tongue.

6 0
3 years ago
Read 2 more answers
Other questions:
  • This chart shows what happens when each object is placed on a balance with a 10 kg weight on the other side.
    7·2 answers
  • A test rocket is launched vertically from ground level (y = 0 m), at time t = 0.0 s. The rocket engine provides constant upward
    6·1 answer
  • A force of 21.0 n is required to start a 2.8 kg box moving across a horizontal concrete floor. (a) what is the coefficient of st
    7·1 answer
  • How does a smoother surface affect braking distance
    8·1 answer
  • Describe the difference between red light and blue light.
    5·1 answer
  • What is the most common source of energy for surface currents?
    8·2 answers
  • When blocking in football, why does a defending lineman often attempt to get his body under that of his opponent and push forwar
    8·2 answers
  • The flaming gorge bridge, in wyoming rises above a dry gulch. If you throw a rock straight out from the bridge, horizontally, an
    6·1 answer
  • A jet airplane has a velocity of 1145 knots. A knot is 1 nautical mile (nm)/hr. A nautical
    7·1 answer
  • If a piece of ribbon were tied to a stretched string carrying a transverse wave, then how is the ribbon observed to oscillate?a.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!