The ship floats in water due to the buoyancy Fb that is given by the equation:
Fb=ρgV, where ρ is the density of the liquid, g=9.81 m/s² is the acceleration of the force of gravity and V is volume of the displaced liquid.
The density of fresh water is ρ₁=1000 kg/m³.
The density of salt water is in average ρ₂=1025 kg/m³.
To compare the volumes of liquids that are displaced by the ship we can take the ratio of buoyancy of salt water Fb₂ and the buoyancy of fresh water Fb₁.
The gravity force of the ship Fg=mg, where m is the mass of the ship and g=9.81 m/s², is equal to the force of buoyancy Fb₁ and Fb₂ because the mass of the ship doesn't change:
Fg=Fb₁ and Fg=Fb₂. This means Fb₁=Fb₂.
Now we can write:
Fb₂/Fb₁=(ρ₂gV₂)/(ρ₁gV₁), since Fb₁=Fb₂, they cancel out:
1/1=1=(ρ₂gV₂)/(ρ₁gV₁), g also cancels out:
(ρ₂V₂)/(ρ₁V₁)=1, now we can input ρ₁=1000 kg/m³ and ρ₂=1025 kg/m³
(1025V₂)/(1000V₁)=1
1.025(V₂/V₁)=1
V₂/V₁=1/1.025=0.9756, we multiply by V₁
V₂=0.9756V₁
Volume of salt water V₂ displaced by the ship is smaller than the volume of sweet water V₁ because the force of buoyancy of salt water is greater than the force of fresh water because salt water is more dense than fresh water.
OPTIONS :
A.) the force that the ball exerts on the wall
B.) the frictional force between the wall and the ball
C.) the acceleration of the ball as it approaches the wall
D.) the normal force that the wall exerts on the ball
Answer: D.) the normal force that the wall exerts on the ball
Explanation: The normal force acting on an object can be explained as a force experienced by an object when it comes in contact with a flat surface. The normal force acts perpendicular to the surface of contact.
In the scenario described above, Erica's tennis ball experiences an opposite reaction after hitting the wall.This is in relation to Newton's 3rd law of motion, which states that, For every action, there is an equal and opposite reaction.
The reaction force in this case is the normal force exerted on the ball by the wall perpendicular to the surface of contact.
Answer:
Force = mass × acceleration
Acceleration:
From first Newton's equation of motion:
Change = v - u:
Answer:
350x
Explanation:
In a microscope the objective has higher magnification than the eyepiece so, this is a microscope
The magnification of a microscope is given by the product of the magnifications of the eyepiece and and the objective.
Objective lens magnification = 35x =
Eyepiece magnification = 10x =
Total magnification
Total magnification is 350x
Answer:
C. software
Explanation:
software, is a collection of data or computer instructions that tell the computer how to work. This is in contrast to physical hardware, from which the system is built and actually performs the work.