Answer:
Ba²⁺(aq) + SO₄²⁻(aq) ⟶ BaSO₄(s)
Explanation:
There are three steps you must follow. You must write the:
- Molecular equation
- Ionic equation
- Net ionic equation
A. Molecular equation
BaCl₂(aq) + Na₂SO₄(aq) ⟶ BaSO₄(s) + 2NaCl(aq)
B. Ionic equation
You write all the soluble substances as ions.
Ba²⁺(aq) + 2Cl⁻(aq) + 2Na⁺(aq) + SO₄²⁻(aq) ⟶ BaSO₄(s) + 2Na⁺(aq) + 2Cl⁻(aq)
C. Net ionic equation
To get the net ionic equation, you cancel the ions that appear on each side of the ionic equation.
Ba²⁺(aq) + <u>2Cl⁻(aq) </u>+ <u>2Na⁺(aq</u>) + SO₄²⁻(aq) ⟶ BaSO₄(s) + <u>2Na⁺(aq)</u> + <u>2Cl⁻(aq)
</u>
The net ionic equation is
Ba²⁺(aq) + SO₄²⁻(aq) ⟶ BaSO₄(s)
Answer:
See below
Explanation:
Molecular formula ( just write down all of the elements ) C 4 H4 O4
Empiracle formual CHO
"Molecular formulas tell you how many atoms of each element are in a compound, and empirical formulas tell you the simplest or most reduced ratio of elements in a compound"
To solve this we use the equation,
M1V1 = M2V2
where M1 is the concentration of the stock
solution, V1 is the volume of the stock solution, M2 is the concentration of
the new solution and V2 is its volume.
65 x V1 = 2 x 200 L
V1 = 6.15 L