Answer:
to separate the compounds by gravity
Explanation:
Centrifuging is the process of separating compound in a liquid mixture by means of gravity and settling. This makes use of the density principle. In the process, the sample is added to the centrifuge. This is then rotated at a certain speed, say 50 rpm. The circular motion creates a force of gravity that pulls the compounds downwards. This then separate the compounds. The heaviest and most dense go down first, then the lighter particles on the top.
Answer:
Neutron has no charge while electron has a negative charge and proton has a positive charge
Answer:
Hi, the given equation has some missing parts. Actual equation is- '
'
balanced equation: 
Explanation:

Balance O and H in basic medium: 
Balance charge:
........(1)

Balance charge:
.....(2)
![[equation(2)\times 4]+[equation (1)]:](https://tex.z-dn.net/?f=%5Bequation%282%29%5Ctimes%204%5D%2B%5Bequation%20%281%29%5D%3A)

is present on the left hand side of balanced equation and it's coefficient is 6
Answer:
A) 0.1225 M
B) 100.4 g/mol
Explanation:
Step 1: Write the generic neutralization reaction
HA(aq) + NaOH(aq) ⇒ NaA(aq) + H₂O(l)
Step 2: Calculate the reacting moles of NaOH
17.73 mL of 0.1036 M NaOH react. The reacting moles are:
0.01773 L × 0.1036 mol/L = 1.837 × 10⁻³ mol
Step 3: Calculate the reacting moles of HA
The molar ratio of HA to NaOH is 1:1. The reacting moles of HA are 1/1 × 1.837 × 10⁻³ mol = 1.837 × 10⁻³ mol.
Step 4: Calculate the molar concentration of HA
1.837 × 10⁻³ moles of HA are in a 15.00 mL volume. The molar concentration is:
M = 1.837 × 10⁻³ mol / 0.01500 L = 0.1225 M
Step 5: Calculate the molar mass of HA
1.837 × 10⁻³ moles of HA weigh 0.1845 g. The molar mass of HA is:
0.1845 g / 1.837 × 10⁻³ mol = 100.4 g/mol