A heat pump has a coefficient of performance of 7.05. If the heat pump absorbs 20 cal of heat from the cold outdoors in each cycle, find the heat expelled to the warm indoors. Answer in units of cal. I believe COP (heating mode) : 7.05 and COP = Qh/W Qc = 20 cal so I have to find Qh= ? cal I dont know an equation to put all this together? Please help, thank you.
Answer:
p = 4000 kg-m/s
Explanation:
Given that,
The mass of a truck, m = 200 kg
Speed of the truck, v = 20 m/s
We need to find the momentum of the truck. The formula for momentum is given by :
p = mv
so,

So, the momentum of the truck is equal to 4000 kg-m/s.
Answer:
(a) the electrical power generated for still summer day is 1013.032 W
(b)the electrical power generated for a breezy winter day is 1270.763 W
Explanation:
Given;
Area of panel = 2 m × 4 m, = 8m²
solar flux GS = 700 W/m²
absorptivity of the panel, αS = 0.83
efficiency of conversion, η = P/αSGSA = 0.553 − 0.001 K⁻¹ Tp
panel emissivity , ε = 0.90
Apply energy balance equation to determine he electrical power generated;
transferred energy + generated energy = 0
(radiation + convection) + generated energy = 0
![[\alpha_sG_s-\epsilon \alpha(T_p^4-T_s^4)]-h(T_p-T_\infty) - \eta \alpha_s G_s = 0](https://tex.z-dn.net/?f=%5B%5Calpha_sG_s-%5Cepsilon%20%5Calpha%28T_p%5E4-T_s%5E4%29%5D-h%28T_p-T_%5Cinfty%29%20-%20%5Ceta%20%5Calpha_s%20G_s%20%3D%200)
![[\alpha_sG_s-\epsilon \alpha(T_p^4-T_s^4)]-h(T_p-T_\infty) - (0.553-0.001T_p)\alpha_s G_s](https://tex.z-dn.net/?f=%5B%5Calpha_sG_s-%5Cepsilon%20%5Calpha%28T_p%5E4-T_s%5E4%29%5D-h%28T_p-T_%5Cinfty%29%20-%20%280.553-0.001T_p%29%5Calpha_s%20G_s)
(a) the electrical power generated for still summer day

![[0.83*700-0.9*5.67*10^{-8}(T_p_1^4-308^4)]-10(T_p_1-308) - (0.553-0.001T_p_1)0.83*700 = 0\\\\3798.94-5.103*10^{-8}T_p_1^4 - 9.419T_p_1 = 0\\\\Apply \ \ iteration \ method \ to \ solve \ for \ T_p_1\\\\T_p_1 = 335.05 \ k](https://tex.z-dn.net/?f=%5B0.83%2A700-0.9%2A5.67%2A10%5E%7B-8%7D%28T_p_1%5E4-308%5E4%29%5D-10%28T_p_1-308%29%20-%20%280.553-0.001T_p_1%290.83%2A700%20%3D%200%5C%5C%5C%5C3798.94-5.103%2A10%5E%7B-8%7DT_p_1%5E4%20-%209.419T_p_1%20%3D%200%5C%5C%5C%5CApply%20%5C%20%20%5C%20iteration%20%5C%20method%20%5C%20to%20%5C%20solve%20%5C%20for%20%5C%20T_p_1%5C%5C%5C%5CT_p_1%20%3D%20335.05%20%5C%20k)

(b)the electrical power generated for a breezy winter day

![[0.83*700-0.9*5.67*10^{-8}(T_p_2^4-258^4)]-10(T_p_2-258) - (0.553-0.001T_p_2)0.83*700 = 0\\\\8225.81-5.103*10^{-8}T_p_2^4 - 29.419T_p_2 = 0\\\\Apply \ \ iteration \ method \ to \ solve \ for \ T_p_2\\\\T_p_2 = 279.6 \ k](https://tex.z-dn.net/?f=%5B0.83%2A700-0.9%2A5.67%2A10%5E%7B-8%7D%28T_p_2%5E4-258%5E4%29%5D-10%28T_p_2-258%29%20-%20%280.553-0.001T_p_2%290.83%2A700%20%3D%200%5C%5C%5C%5C8225.81-5.103%2A10%5E%7B-8%7DT_p_2%5E4%20-%2029.419T_p_2%20%3D%200%5C%5C%5C%5CApply%20%5C%20%20%5C%20iteration%20%5C%20method%20%5C%20to%20%5C%20solve%20%5C%20for%20%5C%20T_p_2%5C%5C%5C%5CT_p_2%20%3D%20279.6%20%5C%20k)
