I think it’s A but don’t quote me on that lol
The hydrocarbon is usually named using the prefix that would indicate or entail how many carbon are present in it. For six carbons, the name would begin with hexa-. For cyclic molecule, the name would begin further with cyclo-. Thus, for the molecule that is described above, the name would be, cyclohexane.
Another, more well-known, component is the cyclic molecule with alternating double bonds, this will be named, benzene.
In the periodic table, elements of the same group are characterized by having the same similar properties.
So, first we will check the elements that lie within the same group as <span>beryllium and then we will attempt to choose the elements with atomic mass higher than 130.
So, elements in the same group as </span>beryllium are: magnesium, calcium, strontium, barium and radium.
Among these elements, we will find that:
radium has atomic mass of 226 amu
barium has atomic mass of 137.327 amu
Based on this, the two elements would be barium and radium.
Answer:
Infrared radiation lies between the visible and microwave portions of the electromagnetic spectrum. Infrared waves have wavelengths longer than visible and shorter than microwaves, and have frequencies which are lower than visible and higher than microwaves
Explanation:
Answer:
c. 8.1 L
Explanation:
Given that:-
Moles of oxygen gas = 0.50 mol
According to the reaction shown below as:-

3 moles of oxygen gas on reaction gives 2 moles of ozone
Also,
1 mole of oxygen gas on reaction gives 2/3 moles of ozone
So,
0.50 mole of oxygen gas on reaction gives
moles of ozone
Moles of ozone = 0.3333 mol
Pressure = 1 atm
Temperature = 25.0 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (25.0 + 273.15) K = 298.15 K
Volume = ?
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
1 atm × V = 0.3333 mol × 0.0821 L.atm/K.mol × 298.15 K
⇒V = 8.1 L