To allow for equations and problems in chemistry to be as precise as possible. When experiments are conducted, and even if the number is the slightest bit off, the problem or experiment could be impacted very negatively. It allows for complete accuracy to ensure nothing goes wrong, since chemistry is very touchy and risky when dealing with extremely unsafe elements.
Answer:
Accuracy is the closeness to the specific target and precision is the closeness of the measurements to each other.
Answer:
d d d d d d d d d dd d d d d .
f q q q q q
14.292 grams of Fe2O3 is formed when 10 gram of iron metal is burned.
Explanation:
The balanced equation for the reaction is to be known so that number of moles taking part can be known.
The balanced chemical equation is
4Fe + 3
⇒ 2 

From the given weight of iron to be used for the production of 
, number of moles of Fe taking part in the reaction can be known by the formula:
Number of moles= mass ÷ Atomic mass of one mole of the element.
(Atomic weight of Fe is 55.845 gm/mole)
Putting the values in equation
Number of moles = 10 gm ÷ 55.845 gm/mole
= 0.179 moles
Applying the stoichiometry concept
4 moles of Fe gives 2 Moles of Fe2O3
0.179 moles will produce x moles of Fe2O3
So, 2÷ 4 = x ÷ 0.179
2/4 = x/ 0.179
2 × 0.179 = 4x
2 × 0.179 / 4 = x
x = 0.0895 moles
So from 10 grams of iron metal 0.0895 moles of Fe2O3 is formed.
Now the formula used above will give the weight of Fe2O3
weight = atomic weight × number of moles
= 159.69 grams × 0.0895
= 14.292 grams of Fe2O3 formed.
False because particles stop moving or study slow down.