1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
laiz [17]
3 years ago
11

The water in a large lake is to be used to generate electricity by the installation of a hydraulic turbine-generator. The elevat

ion difference between the free surfaces upstream and downstream of the dam is 165 ft. Water is to be supplied at a rate of 7000 lbm/s. The electrical power generated is measured to be 1546 hp and the generator efficiency of 92%. (1 hp = 550 lbf.ft/s).
Determine:
a. the overall efficiency of the turbine-generator.
b. the mechanical efficiency of the turbine.
Engineering
1 answer:
ankoles [38]3 years ago
6 0

Answer:

a) 75%

b) 82%

Explanation:

Assumptions:

\text{The mechanical energy for water at turbine exit is negligible.} \\ \\ \text{The elevation of the lake remains constant.}

Properties: The density of water \delta = 1000 kg/m^3

Conversions:

165 \  ft \  to \  meters  = 50 m  \\ \\7000 \ lbm/s \  to  \ kilogram/sec = 3175 kg/s \\ \\1564 \ hp \  to \  kilowatt = 1166 kw \\ \\

Analysis:

Note that the bottom of the lake is the reference level. The potential energy of water at the surface becomes gh. Consider that kinetic energy of water at the lake surface & the turbine exit is negligible and the pressure at both locations is the atmospheric pressure and change in the mechanical energy of water between lake surface & turbine exit are:

e_{mech_{in}} - e_{mech_{out}} = gh - 0

Then;

gh = (9.8 m/s^2) (50 m) \times \dfrac{1 \ kJ/kg}{1000 m^2/s^2}

gh = 0.491 kJ/kg

\Delta E_{mech \ fluid} = m(e_{mech_{in}} - e_{mech_{out}} ) \\ \\ = 3175 kg/s \times 0.491 kJ/kg

= 1559 kW

Therefore; the overall efficiency is:

\eta _{overall} = \eta_{turbine- generator} = \dfrac{W_{elect\ out}}{\Delta E_{mech \fluid}}

= \dfrac{1166 \ kW}{1559 \ kW}

= 0.75

= 75%

b) mechanical efficiency of the turbine:

\eta_{turbine- generator} = \eta_{turbine}\times   \eta_{generator}

thus;

\eta_{turbine} = \dfrac{\eta_{[turbine- generator]} }{\eta_{generator}} \\ \\ \eta_{turbine} = \dfrac{0.75}{0.92} \\ \\ \eta_{turbine} = 0.82 \\ \\ \eta_{turbine} = 82\%

You might be interested in
A fluid flows steadily through a pipe with a uniform cross sectional area. The density of the fluid decreases to half its initia
Vikentia [17]

Answer:

c. V2 equals V1

Explanation:

We can answer this question by using the continuity equation, which states that:

A_1 v_1 = A_2 v_2 (1)

where

A1 is the cross-sectional area in the first section of the pipe

A2 is the cross-sectional area in the second section of the pipe

v1 is the velocity of the fluid in the first section of the pipe

v2 is the velocity of the fluid in the second section of the pipe

In this problem, we are told that the pipe has a uniform cross sectional area, so:

A1 = A2

As a consequence, according to eq.(1), this means that

v1 = v2

so, the velocity of the fluid in the pipe does not change.

5 0
2 years ago
An actual vapour compression system comprises following process represents a. 1-2 Compression process b. 2-3 Condens 1 (or heat
Gemiola [76]

Answer:

Explanation:

The deatailed diagram of VCRS is given below such

1-2=Isentropic compression in which temperature increases at constant entropy

2-3=Isobaric heat rejection i.e. heat rejected at constant pressure(condensation)

3-4=Irreversible expansion or throttling in which enthalpy remains constant

4-1=Isobaric heat addition(Evaporation)

4 0
3 years ago
Block A has a weight of 8 lb. and block B has a weight of 6 lb. They rest on a surface for which the coefficient of kinetic fric
kkurt [141]

Answer:

For block A, a = 9.66 ft/s²

For block B, a = 15 ft/s²

Explanation:

A free body diagram for this force system is attached to this solution

Mass of block A = m₁ = 8 lb

Mass of block B = m₂ = 6 lb

Coefficient of kinetic friction = μ

Normal reaction on the blocks = N

Spring stiffness of the spring btw block A and B = k = 20 lb/ft

Compression of the spring = 0.2 ft

Analysing Block A first

The forces on block A include, the weight, normal reaction, frictional force and the elastic force due to the spring

Sum of forces in the y-direction = 0

So, the weight of the block = Normal reaction of the surface on the block

N = W = 8 lb

Sum of forces in the x-direction = maₓ

(k × x) - (μ × N) = maₓ

m = W/g = 8/32.2 = 0.248 lbm

(20×0.2) - (0.2 × 8) = (0.248) aₓ

aₓ = 9.66 ft/s²

The forces on block B include, the weight, normal reaction, frictional force and the elastic force due to the spring

Sum of forces in the y-direction = 0

So, the weight of the block = Normal reaction of the surface on the block

N = W = 6 lb

Sum of forces in the x-direction = maₓ

(k × x) - (μ × N) = maₓ

m = W/g = 6/32.2 = 0.186 lbm

(20×0.2) - (0.2 × 6) = (0.186) aₓ

aₓ = 15 ft/s²

4 0
3 years ago
Worth 20 points! Please help ASAP!
gulaghasi [49]

Answer:

I am in 6th grade, why are high school things popping up??

Explanation:

8 0
3 years ago
Which statements describe how the Fed responds to high inflation? Check all that apply.
Sveta_85 [38]
Answer:
• it charges banks more interest
• it sells more securities
• it decreases the money supply

In response to high inflation, the Fed charges banks more interests and pays the banks less interests. It also sells not securities.
8 0
2 years ago
Other questions:
  • 6. Staples are the most common item used to secure and support cables in residential wiring.​
    14·1 answer
  • . A roadway is being designed capable of allowing 70 mph vehicle speed. The superelevation around one curve is 0.05 inches per i
    15·1 answer
  • I need answers for this sheet please.
    15·1 answer
  • Consider the gas carburizing of a gear of 1018 steel (0.18 wt %) at 927°C (1700°F). Calculate the time necessary to increase the
    12·1 answer
  • A force of 16,000 will cause a 1 1 bar of magnesium to stretch from 10 to 10.036 . Calculate the modulus of elasticity in . (Ent
    6·1 answer
  • A 10-mm-diameter Brinell hardness indenter produced an indentation 2.50 mm in diameter in a steel alloy when a load of 1000 kg w
    12·1 answer
  • 1. Differentiate between speed and velocity.<br>​
    9·2 answers
  • How many trains have been invented all around the world?
    14·1 answer
  • What are the specifications state that all work shall be done?
    10·1 answer
  • Plz help If an item is $13.00 for a case of 24, then it is $
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!