Answer:
<em>No, a rigid body cannot experience any acceleration when the resultant force acting on the body is zero.</em>
Explanation:
If the net force on a body is zero, then it means that all the forces acting on the body are balanced and cancel out one another. This sate of equilibrium can be static equilibrium (like that of a rigid body), or dynamic equilibrium (that of a car moving with constant velocity)
For a body under this type of equilibrium,
ΣF = 0 ...1
where ΣF is the resultant force (total effective force due to all the forces acting on the body)
For a body to accelerate, there must be a force acting on it. The acceleration of a body is proportional to the force applied, for a constant mass of the body. The relationship between the net force and mass is given as
ΣF = ma ...2
where m is the mass of the body
a is the acceleration of the body
Substituting equation 2 into equation 1, we have
0 = ma
therefore,
a = 0
this means that<em> if the resultant force acting on a rigid body is zero, then there won't be any force available to produce acceleration on the body.</em>
<em></em>
Answer:
Explanation:
During rescue missions, different types of energy can be devices for flashlight, this could be human powered energy such as squeezing or compressing. In flashlight electrical energy is converted to light and thermal energy.
A squeezing or compressing to get energy for flashlight can be regarded as "DYNAMO PROCESS" it involves spinning of "fly wheels" into the flashlight through consistent squeezing ,which is connected to a dynamo(Dynamo supply electrical current). Hence the needed light is seen on the bulb of the flashlight.
If an electron, a proton, and a deuteron move in a magnetic field with the same momentum perpendicularly, the ratio of the radii of their circular paths will be:
<h3>How is the ratio of the perpendicular parts obtained?</h3>
To obtain the ratio of the perpendicular parts, one begins bdy noting that the mass of the proton = 1m, the mass of deuteron = 2m, and the mass of the alpha particle = 4m.
The ratio of the radii of the parts can be obtained by finding the root of the masses and dividing this by the charge. When the coefficients are substituted into the formula, we will have:
r = √m/e : √2m/e : √4m/2e
When resolved, the resulting ratios will be:
1: √2 : 1
Learn more about the radii of their circular paths here:
brainly.com/question/16816166
#SPJ4