The question is incomplete. The complete question is :
A viscoelastic polymer that can be assumed to obey the Boltzmann superposition principle is subjected to the following deformation cycle. At a time, t = 0, a tensile stress of 20 MPa is applied instantaneously and maintained for 100 s. The stress is then removed at a rate of 0.2 MPa s−1 until the polymer is unloaded. If the creep compliance of the material is given by:
J(t) = Jo (1 - exp (-t/to))
Where,
Jo= 3m^2/ GPA
to= 200s
Determine
a) the strain after 100's (before stress is reversed)
b) the residual strain when stress falls to zero.
Answer:
a)-60GPA
b) 0
Explanation:
Given t= 0,
σ = 20Mpa
Change in σ= 0.2Mpas^-1
For creep compliance material,
J(t) = Jo (1 - exp (-t/to))
J(t) = 3 (1 - exp (-0/100))= 3m^2/Gpa
a) t= 100s
E(t)= ΔσJ (t - Jo)
= 0.2 × 3 ( 100 - 200 )
= 0.6 (-100)
= - 60 GPA
Residual strain, σ= 0
E(t)= Jσ (Jo) ∫t (t - Jo) dt
3 × 0 × 200 ∫t (t - Jo) dt
E(t) = 0
I think its Mercury because it's the closest to the sun.
<span>Work: W = Fd. 50(distance) multiplied by 90(force) would equal 4500 J or, answer D</span>
Answer:
The image height is 3.0 cm
Explanation:
Given;
object distance,
= 15.0 cm
image distance,
= 5.0 cm
height of the object,
= 9.0 cm
height of the image,
= ?
Apply lens equation;

Therefore, the image height is 3.0 cm. The negative values for image height indicate that the image is an inverted image.
The magnitude of the force of friction is 40 N
Explanation:
To solve the problem, we just have to analyze the forces acting on the student and the scooter along the horizontal direction. We have:
- The constant pushing force forward, of magnitude F = 40 N
- The frictional force, acting backward, 
Since the two forces are in opposite direction, the equation of motion is

where
m is the mass of the student+scooter
a is the acceleration
However, here the scooter is moving at constant speed: this means that its acceleration is zero, so
a = 0
And therefore,

which means that the magnitude of the force of friction is also equal to 40 N.
Learn more about force of friction here:
brainly.com/question/6217246
brainly.com/question/5884009
brainly.com/question/3017271
brainly.com/question/2235246
#LearnwithBrainly