Answer:
Yes
Explanation:
Yes, this is a random error generating because of statistical constraint. We only have finite number of data points. As per this, if we plot our observation we will get a gaussian (inverse bell ) shaped curve with mean equal to central value.
Answer:
The coefficient of static friction is 0.29
Explanation:
Given that,
Radius of the merry-go-round, r = 4.4 m
The operator turns on the ride and brings it up to its proper turning rate of one complete rotation every 7.7 s.
We need to find the least coefficient of static friction between the cat and the merry-go-round that will allow the cat to stay in place, without sliding. For this the centripetal force is balanced by the frictional force.

v is the speed of cat, 

So, the least coefficient of static friction between the cat and the merry-go-round is 0.29.
Answer:
B. has a smaller frequency
C. travels at the same speed
Explanation:
The wording of the question is a bit confusing, it should be short/long for wavelength and low/high for frequency. I assume low wavelength mean short wavelength.
All sound wave travel with the same velocity(343m/s) so wavelength doesn't influence its speed at all. It won't be faster or slower, it will have the same speed.
Velocity is a product of wavelength and frequency. So, a long-wavelength sound wave should have a lower frequency.
The option should be:
A. travels slower -->false
B. has a smaller frequency -->true
C. travels at the same speed --->true
D. has a higher frequency --->false
E. travels faster has the same frequency --->false
Answer:
Onel de guzman now he's 44,the first world's computer virus has admitted to his guilt.
(●’◡’●)ノ (ᗒᗣᗕ)՞ ༼ つ ◕◡◕ ༽つ
Answer:
they were slaves, so they did practically everything anyone didn't do.
Explanation:
btw, which war? or battle?