Answer:
Step-by-step explanation:
The index of a radical is the denominator of a fractional exponent, and vice versa. If you think about the rules of exponents, you know this must be so.
For example, consider the cube root:
![\sqrt[3]{x}\cdot \sqrt[3]{x}\cdot \sqrt[3]{x}=(\sqrt[3]{x})^3=x\\\\(x^{\frac{1}{3}})^3=x^{\frac{3}{3}}=x^1=x](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%7D%5Ccdot%20%5Csqrt%5B3%5D%7Bx%7D%5Ccdot%20%5Csqrt%5B3%5D%7Bx%7D%3D%28%5Csqrt%5B3%5D%7Bx%7D%29%5E3%3Dx%5C%5C%5C%5C%28x%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%29%5E3%3Dx%5E%7B%5Cfrac%7B3%7D%7B3%7D%7D%3Dx%5E1%3Dx)
That is ...
![\sqrt[3]{x}=x^{\frac{1}{3}} \quad\text{radical index = fraction denominator}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%7D%3Dx%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%20%5Cquad%5Ctext%7Bradical%20index%20%3D%20fraction%20denominator%7D)
There are two scales that may be possible for this scale model; one where it's for every foot and one where it's for every meter.
The for every foot would be better to find out since the scale would be easier to use.
First, you have to divide each sided by 4.2, since you want to find how many meters for each foot.

For every 1 foot used in the model, the actual will be 125 meters.
1 ft = 125 m
He should take out the cupcakes at 7:15! Hope this helps :D
I need the options to the questions
Answer:

Step-by-step explanation:
There are two operations involved:
Vertical translation:
(1)
Note: Positive sign represent a translation upwards.
Horizontal translation:
(2)
Note: Positive sign represent a translation leftwards.
Then, the new function must be:

