Multiply all the sides and thats your answer
:<span> </span><span>Under the assumption that a cell is made up of two concentric spheres you find the surface are of the inside sphere which will be your A.
You already have your separation and dielectric constant so just use the formula you stated towards the end of your question and you get 8.93x10^-11 Farads which is about 89pF</span>
Answer: 5,640 s (94 minutes)
Explanation:
the tangential speed of the HST is given by
(1)
where
is the length of the orbit
r is the radius of the orbit
T is the orbital period
In our problem, we know the tangential speed:
. The radius of the orbit is the sum of the Earth's radius and the distance of the HST above Earth's surface:

So, we can re-arrange equation (1) to find the orbital period:

Dividing by 60, we get that this time corresponds to 94 minutes.
The velocity of the pitcher is <u>0.105 m/s</u> in a direction opposite to the velocity of the ball.
When no external force acts on a system, the total momentum of the system is conserved. The total initial momentum of the system is equal to the total final momentum of the system.
The pitcher and the ball are initially at rest, therefore, the total initial momentum of the system is zero.
Since no external forces act on the system comprising of pitcher and the ball, the total final momentum of the system is also equal to zero.
If the mass of the pitcher is mp and its speed is vp, the mass of the ball is mb and the ball's speed is vb, then the final momentum of the system of pitcher and the ball is given by,

Therefore,

Substituet 0.15 kg for mb, 50 kg for mp and 35 m/s for vb.

The pitcher has a velocity <u> 0.105 m/s</u> opposite to the direction of the velocity of the ball.
Answer:
Respect the client’s decision
Explanation:
just took the test