Answer:
The horizontal distance covered by the firework will be 
Explanation:
Let acceleration due to gravity on the planet be g, initial velocity of the firework be u and angle made with the horizontal be ∅.
writing equation of motion in vertical direction:


and 
therefore 
writing equation of motion in horizontal direction:


therefore the equation becomes 
therefore horizontal distance traveled =
Answer:
1 put the black can in the temperature thing.
2.put the silver can well put water in it and leave it out side for a while.
3.Then you can be the judge of witch one will have a larger increase.
hope this helps :)
happy to help any time:)
Explanation:
Answer:
2100 J
Explanation:
Parameters given:
Force acting on the object, F = 420 N
Distance moved by object, d = 5m
The change in kinetic energy of an object is equal to the work done by a force acting on the object:
W = F * d
∆KE = F * d
∆KE = 420 * 5
∆KE = 2100 J
Answer:
0.686 g of ice melts each second.
Solution:
As per the question:
Cross-sectional Area of the Copper Rod, A = 
Length of the rod, L = 19.6 cm = 0.196 m
Thermal conductivity of Copper, K = 
Conduction of heat from the rod per second is given by:

where
= temperature difference between the two ends of the rod.
Thus

Now,
To calculate the mass, M of the ice melted per sec:

where
= Latent heat of fusion of water = 333 kJ/kg

Answer:
1.9841256 kg
Explanation:
Given;
Length of the swimming pool = 25.0 ft = 7.62 m ( 1 ft = 0.3048 m )
Width of the swimming pool = 18.5 ft = 5.64 m
Depth of the pool = 9.0 ft =
Total depth of the water in the pool when filled = 9 ft - 7 inches = 2.56 m
now,
Volume of the water in the pool = Length × Width × Depth
or
Volume of the water in the pool = 7.62 × 5.64 × 2.56 = 110.2292 m³
also,
1 m³ = 1000 L
thus,
110.2292 m³ = 110229.2 L
also it is given that 18 mg of Cl is added to 1 liter of water
therefore,
In 110229.2 L of water Cl added will be = 110229.2 × 18 = 1984125.6 mg
or
= 1.9841256 kg