Answer:
The average kinetic energy of the molecules increases
Explanation:
The temperature of a substance is proportional to the average kinetic energy of the particles in the substance.
In fact, for an ideal gas for instance, there is the following relationship:

where
KE is the average kinetic energy of the particles
k is the Boltzmann's constant
T is the absolute temperature of the gas
When we heat a substance (such as the flask of water in this problem), we are giving thermal energy to the particles of the substance; therefore, these particles will move faster on average, so their kinetic energy will increase (and the temperature of the substance will increase as well).
Answer:
The height of the water column = 1.62405
× 10⁻¹ m
Explanation:
The air cavity in the Coke bottle = 0.220 m deep
The fundamental (frequency) it plays when water is added to shorten the column and it is blown across the top, f = 528 Hz
The given speed of sound in air, v = 343 m/s
We note that the air cavity in the coke bottle is equivalent to a tube closed at one end
The fundamental frequency for a tube closed at one end, 'f', is given as follows;
f = v/(4·L) = v/λ
Where;
L = The height of the water column
λ = The wavelength of the wave
∴ 4·L = v/f = (343 m/s)/(528 Hz) = 0.6496
m
∴ L = 0.6496
m/4 = 0.162405
m
The height of the water column = 1.62405
× 10⁻¹ m.
The answer is d I took the test
electromagnet
When a electric current is passed through an insulated wire that is coiled around an iron core, like a nail, an electromagnet is created.
100 meters divided by a speed of 12.5 meters a second equals 8 seconds.