1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Levart [38]
3 years ago
15

A steel plate of width 120mm and thickness of 20mm is bent into a circular arc radius of 10. You are required to calculate the m

aximum stress induced and the bending moment which will give the maximum stress. You are given that E=2*10^5​

Engineering
1 answer:
notka56 [123]3 years ago
6 0

Answer:

Hence the magnitude of the pure moment m will be 2\times 10^5.

Explanation:

  •  Width of steel fleet = 120 mm
  •   The thickness of steel fleet = 10 mm
  •   Let the circle of radius = 10 m  

Now,

We know that,

\frac{M}{I} = \frac{E}{R}

Thus, M =\frac{EI}{R}

Here

R = 10000 mm  

I=\frac{1}{12}\times 120\times 10^{3}\\= 10^{4} mm^{4}

E=2\times 10^{5}n/mm^{2}\\\\E=2\times 10^{5}n/mm^{2}\\\\M={(2\times 10^{5}\times 10^{4})/{10000}}\\\\M=2\times 10^{5}

 

Hence, the magnitude of the pure moment m will be 2\times 10^5.

You might be interested in
Air exits a compressor operating at steady-state, steady-flow conditions at 150 oC, 825 kPa, with a velocity of 10 m/s through a
ioda

Answer:

a) Qe = 0.01963 m^3 / s , mass flow rate m^ = 0.1334 kg/s

b) Inlet cross sectional area = Ai = 0.11217 m^2 , Qi = 0.11217 m^3 / s    

Explanation:

Given:-

- The compressor exit conditions are given as follows:

                  Pressure ( Pe ) = 825 KPa

                  Temperature ( Te ) = 150°C

                  Velocity ( Ve ) = 10 m/s

                  Diameter ( de ) = 5.0 cm

Solution:-

- Define inlet parameters:

                  Pressure = Pi = 100 KPa

                  Temperature = Ti = 20.0

                  Velocity = Vi = 1.0 m/s

                  Area = Ai

- From definition the volumetric flow rate at outlet ( Qe ) is determined by the following equation:

                   Qe = Ae*Ve

Where,

           Ae: The exit cross sectional area

                   Ae = π*de^2 / 4

Therefore,

                  Qe = Ve*π*de^2 / 4

                  Qe = 10*π*0.05^2 / 4

                  Qe = 0.01963 m^3 / s

 

- To determine the mass flow rate ( m^ ) through the compressor we need to determine the density of air at exit using exit conditions.

- We will assume air to be an ideal gas. Thus using the ideal gas state equation we have:

                   Pe / ρe = R*Te  

Where,

           Te: The absolute temperature at exit

           ρe: The density of air at exit

           R: the specific gas constant for air = 0.287 KJ /kg.K

             

                ρe = Pe / (R*Te)

                ρe = 825 / (0.287*( 273 + 150 ) )

                ρe = 6.79566 kg/m^3

- The mass flow rate ( m^ ) is given:

               m^ = ρe*Qe

                     = ( 6.79566 )*( 0.01963 )

                     = 0.1334 kg/s

- We will use the "continuity equation " for steady state flow inside the compressor i.e mass flow rate remains constant:

              m^ = ρe*Ae*Ve = ρi*Ai*Vi

- Density of air at inlet using inlet conditions. Again, using the ideal gas state equation:

               Pi / ρi = R*Ti  

Where,

           Ti: The absolute temperature at inlet

           ρi: The density of air at inlet

           R: the specific gas constant for air = 0.287 KJ /kg.K

             

                ρi = Pi / (R*Ti)

                ρi = 100 / (0.287*( 273 + 20 ) )

                ρi = 1.18918 kg/m^3

Using continuity expression:

               Ai = m^ / ρi*Vi

               Ai = 0.1334 / 1.18918*1

               Ai = 0.11217 m^2          

- From definition the volumetric flow rate at inlet ( Qi ) is determined by the following equation:

                   Qi = Ai*Vi

Where,

           Ai: The inlet cross sectional area

                  Qi = 0.11217*1

                  Qi = 0.11217 m^3 / s    

- The equations that will help us with required plots are:

Inlet cross section area ( Ai )

                Ai = m^ / ρi*Vi  

                Ai = 0.1334 / 1.18918*Vi

                Ai ( V ) = 0.11217 / Vi   .... Eq 1

Inlet flow rate ( Qi ):

                Qi = 0.11217 m^3 / s ... constant  Eq 2

               

6 0
3 years ago
A home electrical system is joined to the electric company's system at the junction of the
aleksandrvk [35]

That would be B, I hope this helps!

5 0
3 years ago
a. Draw the logic gate implementation for the Boolean function F = W X(Y + Z).b. Write the DeMorgan equivalent Boolean statement
Llana [10]

Answer:

DeMorgan equivalent :

F = B + C

F' = ⁻B⁻+⁻C⁻ = ⁻BC⁻

Explanation:

Attached below is the logic gate implementation diagram and the DeMorgan equivalent Boolean statement as requested in part A and B

3 0
3 years ago
A building wall has dimensions of 3 m tall and 10 m wide. It is constructed of 2 cm. wallboard (k = 0.5 W/m-C) on the inside, 3
Art [367]

Answer: heat loss through wall is 16.58034kW

Temperature of inside wall surface is 47°c

Temperature of outside wall surface is -2.7°c

Explanation:detailed calculation and explanation is shown in the image below.

4 0
3 years ago
An excited electron in an Na atom emits radiation at a wavelength 589 nm and returns to the ground state. If the mean time for t
11Alexandr11 [23.1K]

Answer:   Inherent width in the emission line: 9.20 × 10⁻¹⁵ m or 9.20 fm

                length of the photon emitted: 6.0 m

Explanation:

The emitted wavelength is 589 nm and the transition time is ∆t = 20 ns.

Recall the Heisenberg's uncertainty principle:-

                                 ∆t∆E ≈ h ( Planck's Constant)

The transition time ∆t corresponds to the energy that is ∆E

E=h/t = \frac{(1/2\pi)*6.626*10x^{-34} J.s}{20*10x^{-9} } = 5.273*10x^{-27} J =  3.29* 10^{-8} eV.

The corresponding uncertainty in the emitted frequency ∆v is:

∆v= ∆E/h = (5.273*10^-27 J)/(6.626*10^ J.s)=  7.958 × 10^6 s^-1

To find the corresponding spread in wavelength and hence the line width ∆λ, we can differentiate

                                                    λ = c/v

                                                    dλ/dv = -c/v² = -λ²/c

Therefore,

      ∆λ = (λ²/c)*(∆v) = {(589*10⁻⁹ m)²/(3.0*10⁸ m/s)} * (7.958*10⁶ s⁻¹)

                                 =  9.20 × 10⁻¹⁵ m or 9.20 fm

     The length of the photon (<em>l)</em> is

l = (light velocity) × (emission duration)

  = (3.0 × 10⁸  m/s)(20 × 10⁻⁹ s) = 6.0 m          

                                                   

6 0
3 years ago
Other questions:
  • A heat engine that receives heat from a furnace at 1200°C and rejects waste heat to a river at 20°C has a thermal efficiency of
    14·1 answer
  • A weighted, frictionless piston-cylinder device initially contains 5.25 kg of R134a as saturated vapor at 500 kPa. The container
    7·1 answer
  • Which scientist was famous for his laws on gravity?
    10·2 answers
  • Question 3 (5 points)
    7·1 answer
  • Which is the maximum length for any opening on the surface of a 2G SMAW guided bend test specimen?
    11·1 answer
  • A solid cylindrical workpiece made of 304 stainless steel is 150 mm in diameter and 100 mm is high. It is reduced in height by 5
    12·1 answer
  • A step-up transformer has 20 primary turns and 400 secondary turns. If the primary current is 30 A, what is the secondary curren
    15·1 answer
  • which type of irrigation fluid is typically used for endoscopic procedures using monopolar electrosurgery
    15·1 answer
  • All of the following affect friction EXCEPT
    8·1 answer
  • What current must flow if 0.24 coulombs is to be transferred in 15ms?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!