Answer:
They will repel each other since they have the same charge specifically negative
Explanation:
Answer:
displacement (x) = 0.003798 meters
Explanation:
from the fact that the string is hung vertically we can deduce that:
Total force acting on the mass = Fs (by spring) + Fg (by gravity)
<em>where</em>
Fs = k*x , x is the displacement..
Fg = m*g
then:
Ftot = m*a, <em>but a = 0 m/(s^2) because the mass becames stationary.</em>
Ftot = 0
Fs + Fg = 0
<em>by direction, take down as negative.</em>
Fs - Fg = 0
k*x = m*g
x = m*g/k = [(0.400)(9.8)]/(10.32)
= 0.3798 meters
In electrical circuit, this arrangement is called a R-L series circuit. It is a circuit containing elements of an inductor (L) and a resistor (R). Inductance is expressed in units of Henry while resistance is expressed in units of ohms. The relationship between these values is called the impedance, denoted as Z. Its equation is
Z = √(R^2 + L^2)
Z = √((1.24×10^3 ohms)^2 + (6.95×10^-6 H)^2)
Z = 1,240 ohms
The unit for impedance is also ohms. Since the circuit is in series, the voltage across the inductor and the resistor are additive which is equal to 12 V. Knowing the impedance and the voltage, we can determine the maximum current.
I = V/Z=12/1,240 = 9.68 mA
But since we only want to reach 73.6% of its value, I = 9.68*0.736 = 7.12 mA. Then, the equation for R-L circuits is

, where τ = L/R = 6.95×10^-6/1.24×10^3 = 5.6 x 10^-9
Then,
t = 7.45 nanosecondsPart B.) If t = 1.00τ, then t/τ = 1. Therefore,
I = 6.12 mA
Answer:
First Kepler law states that <em><u>Each</u></em><em><u> </u></em><em><u>planet</u></em><em><u> </u></em><em><u>describes</u></em><em><u> </u></em><em><u>an</u></em><em><u> </u></em><em><u>ellipsoidal</u></em><em><u> </u></em><em><u>motion</u></em><em><u> </u></em><em><u>about</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>sun</u></em><em><u> </u></em><em><u>as</u></em><em><u> </u></em><em><u>its</u></em><em><u> </u></em><em><u>single</u></em><em><u> </u></em><em><u>focus</u></em><em><u>.</u></em>
Second Kepler law states that <em><u>A</u></em><em><u>n</u></em><em><u> </u></em><em><u>i</u></em><em><u>m</u></em><em><u>a</u></em><em><u>g</u></em><em><u>i</u></em><em><u>n</u></em><em><u>a</u></em><em><u>r</u></em><em><u>y</u></em><em><u> </u></em><em><u>l</u></em><em><u>i</u></em><em><u>n</u></em><em><u>e</u></em><em><u> </u></em><em><u>j</u></em><em><u>o</u></em><em><u>i</u></em><em><u>n</u></em><em><u>i</u></em><em><u>n</u></em><em><u>g</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>planet</u></em><em><u> </u></em><em><u>t</u></em><em><u>o</u></em><em><u> </u></em><em><u>t</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>Sun</u></em><em><u> </u></em><em><u>sweeps</u></em><em><u> </u></em><em><u>out</u></em><em><u> </u></em><em><u>equal</u></em><em><u> </u></em><em><u>areas</u></em><em><u> </u></em><em><u>in</u></em><em><u> </u></em><em><u>equal</u></em><em><u> </u></em><em><u>time</u></em><em><u> </u></em><em><u>intervals</u></em><em><u>.</u></em>
Third Kepler law states that <em><u>The</u></em><em><u> </u></em><em><u>squares</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>period</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>revolution</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>planet</u></em><em><u> </u></em><em><u>around</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>sun</u></em><em><u> </u></em><em><u>are</u></em><em><u> </u></em><em><u>proportional</u></em><em><u> </u></em><em><u>to</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>cubes</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>mean</u></em><em><u> </u></em><em><u>distance</u></em><em><u> </u></em><em><u>between</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>planet</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>sun</u></em><em><u>.</u></em>
Weightlessness is the condition where the body has zero gravity ( its acceleration is equal to the acceleration due to gravity )

The magnification of the ornament is 0.25
To calculate the magnification of the ornament, first, we need to find the image distance.
Formula:
- 1/f = u⁻¹+v⁻¹.................... Equation 1
Where:
- f = Focal length of the ornament
- u = image distance
- v = object distance.
make u the subject of the equation
- u = fv/(f+v)................ Equation 2
From the question,
Given:
Substitute these values into equation 2
- u = (12×4)/(12+4)
- u = 48/16
- u = 3 cm.
Finally, to get the magnification of the ornament, we use the formula below.
- M = u/v.................. Equation 3
Where
- M = magnification of the ornament.
Substitute these values above into equation 3
Hence, The magnification of the ornament is 0.25