Answer:
how much space it takes up in the world
Explanation:
1) Mass is a measurement of the amount of matter something contains, while Weight is the measurement of the pull of gravity on an object. 2) Mass is measured by using a balance comparing a known amount of matter to an unknown amount of matter. Weight is measured on a scale.
Answer:
90-100meters
Explanation:
The overall length limitation of a UTP cable is 90-100meters. Once this limitation is reached, a repeater is employed to transfer data.
Answer:
<em>His angular velocity will increase.</em>
Explanation:
According to the conservation of rotational momentum, the initial angular momentum of a system must be equal to the final angular momentum of the system.
The angular momentum of a system =
'ω'
where
' is the initial rotational inertia
ω' is the initial angular velocity
the rotational inertia = 
where m is the mass of the system
and r' is the initial radius of rotation
Note that the professor does not change his position about the axis of rotation, so we are working relative to the dumbbells.
we can see that with the mass of the dumbbells remaining constant, if we reduce the radius of rotation of the dumbbells to r, the rotational inertia will reduce to
.
From
'ω' =
ω
since
is now reduced, ω will be greater than ω'
therefore, the angular velocity increases.
Answer:
29.96m/s
Explanation:
Given parameters:
Initial speed = 25.5m/s
Acceleration = 1.94m/s²
Time = 2.3s
Unknown:
Final speed of the car = ?
Solution:
To solve this problem, we are going to apply the right motion equation:
v = u + at
v is the final speed
u is the initial speed
a is the acceleration
t is the time taken
Now insert the parameters and solve;
v = 25.5 + (1.94 x 2.3) = 29.96m/s
<h2>
The asteroid is 4.11 x 10¹¹ m far from Sun</h2>
Explanation:
We have gravitational force

Where G = 6.67 x 10⁻¹¹ N m²/kg²
M = Mass of body 1
M = Mass of body 2
r = Distance between them
Here we have
M = Mass of Sun = 1.99×10³⁰ kg
m = Mass of asteroid = 4.00×10¹⁶ kg
F = 3.14×10¹³ N
Substituting

The asteroid is 4.11 x 10¹¹ m far from Sun