Answer with Explanation:
Let rest mass
at point P at distance x from center of the planet, along a line connecting the centers of planet and the moon.
Mass of moon=m
Distance between the center of moon and center of planet=D
Mass of planet=M
We are given that net force on an object will be zero
a.We have to derive an expression for x in terms of m, M and D.
We know that gravitational force=
Distance of P from moon=D-x
=Force applied on rest mass due to m
=Force on rest mass due to mas M
because net force is equal to 0.





Let 
Then, 




b.We have to find the ratio R of the mass of the mass of the planet to the mass of the moon when x=
Net force is zero




Hence, the ratio R of the mass of the planet to the mass of the moon=4:1
Similar chemical behavior. All the members of a group of elements have the same number of valence electrons and similar chemical properties.
<span> Newtons First Law is applied on my egg experiment because it will not move or change it's acceleration until a force acts upon it. In this case, one example of those forces would be Mr. Baker picking up the egg project. Newton's Second Law is applied because of the acceleration caused by natural forces as the egg is plummeting to the earth.</span>
Answer:
D.300nm
Explanation:
Wavelength = Speed of light / Frequency of light.....
where the speed of light is...(3 × 10^8)
Wavelength = (3 × 10^8)/(1 × 10^15)
Wavelength = 3 × 10^-7
;Wavelength = 300 × 10^-9
Hence its....300 nm