To solve this problem we will derive the expression of the precession period from the moment of inertia of the given object. We will convert the units that are not in SI, and finally we will find the precession period with the variables found. Let's start defining the moment of inertia.
Here,
M = Mass
R = Radius of the hoop
The precession frequency is given as
Here,
M = Mass
g= Acceleration due to gravity
d = Distance of center of mass from pivot
I = Moment of inertia
= Angular velocity
Replacing the value for moment of inertia
The value for our angular velocity is not in SI, then
Replacing our values we have that
The precession frequency is
Therefore the precession period is 5.4s
The speed at which sound travels through the gas in the tube is 719.94m/s
<u>Explanation:</u>
Given:
Frequency, f = 11999Hz
Wavelength, λ = 0.03m
Velocity, v = ?
Sound speed in the tube is calculated by multiplying the frequency v by the wavelength λ.
As the sound loudness changed from a maximum to a minimum, then we know the sound interference in the case changed from constructive interference (the two sound waves are in phase, i.e. peaks are in a line with peaks and so the troughs), to a destructive interference (peaks coinciding with troughs). The least distance change required to cause such a change is a half wavelength distance, so:
λ/2 = 0.03/2
λ = 0.06m
We know,
v = λf
v = 0.06 X 11999Hz
v = 719.94m/s
Therefore, the speed at which sound travels through the gas in the tube is 719.94m/s
No, the speed at which an object falls is not equal to the acceleration at which it falls.
Answer:
Option B
Explanation:
Speed is defined as how fast an object can cover a specific distance and in what time it covers. So it is measured as the ratio of distance covered to the time taken to cover that distance. While acceleration is the rate of change of velocity. Moreover, speed is a scalar quantity and acceleration is a vector quantity. So most of the times, the direction will play an important role in the varying values of speed and acceleration. Also, acceleration of an object will depend upon the force and mass of the object. Thus, speed and acceleration will not attain same value always.
Answer:
motion
Explanation:
the motion causes static which is kinetic energy
Answer:
12552 J or 3000 calories
Explanation:
Q = m × c × ∆T
Where;
Q = amount of heat energy (J)
m = mass of water (g)
c = specific heat capacity (4.184 J/g°C)
∆T = change in temperature
For 50mL of water, there are 50g, hence, m = 50g, c = 4.184 J/g°C, initial temperature = 0°C, final temperature = 60°C.
Q = m × c × ∆T
Q = 50 × 4.184 × (60 - 0)
Q = 209.2 × 60
Q = 12552 J
Hence, the amount of heat energy used to heat the water is 12552 J or 3000 calories