The amount of work done by steady flow devices varies with the particular gas volume. The kinetic energy of gas particles decreases during cooling.
When the gas is subjected to intermediate cooling during compression, the gas specific volume is reduced, which lowers the compressor's power consumption. Compression is less adiabatic and more isothermal because the compressed gas must be cooled between stages since compression produces heat. The system's thermodynamic cycle's cold sink temperature is lowered by cooling the compressor coils. By increasing the temperature difference between the heat source and the cold sink, this improves efficiency.
Learn more about thermodynamics here-
brainly.com/question/1368306
#SPJ4
Answer:
sorry but I can't understand this Language.
Explanation:
unable to answer sorry
<u>Solution and Explanation:</u>
Volume of gas stream = 1000 cfm (Cubic Feet per Minute)
Particulate loading = 400 gr/ft3 (Grain/cubic feet)
1 gr/ft3 = 0.00220462 lb/ft3
Total weight of particulate matter = 
Cyclone is to 80 % efficient
So particulate remaining = 
emissions from this stack be limited to = 10.0 lb/hr
Particles to be remaining after wet scrubber = 10.0 lb/hr
So particles to be removed = 685.7136- 10 = 675.7136
Efficiency = output multiply with 100/input = 98.542 %
Answer:
Load carried by shaft=9.92 ft-lb
Explanation:
Given: Power P=4.4 HP
P=3281.08 W
<u><em>Power: </em></u>Rate of change of work with respect to time is called power.
We know that P=
rad/sec
So that P=
So 3281.08=
T=13.45 N-m (1 N-m=0.737 ft-lb)
So T=9.92 ft-lb.
Load carried by shaft=9.92 ft-lb