Answer:
The rate of disappearance of C₂H₆O = 2.46 mol/min
Explanation:
The equation of the reaction is given below:
2 K₂Cr₂O₇ + 8 H₂SO₄ + 3 C₂H₆O → 2 Cr₂(SO₄)₃ + 2 K₂SO₄ + 11 H₂O
From the equation of the reaction, 3 moles of C₂H₆O is used when 2 moles of Cr₂(SO₄)₃ are produced, therefore, the mole ratio of C₂H₆O to Cr₂(SO₄)₃ is 3:2.
The rate of appearance of Cr₂(SO₄)₃ in that particular moment is given 1.64 mol/min. This would than means that C₂H₆O must be used up at a rate which is approximately equal to their mole ratios. Thus, the rate of of the disappearance of C₂H₆O can be calculated from the mole ratio of Cr₂(SO₄)₃ and C₂H₆O.
Rate of disappearance of C₂H₆O = 1.64 mol/min of Cr₂(SO₄)₃ * 3 moles of C₂H₆O / 2 moles of Cr₂(SO₄)₃
Rate of disappearance of C₂H₆O = 2.46 mol/min of C₂H₆O
Therefore, the rate of disappearance of C₂H₆O = 2.46 mol/min
<span>Germane is the chemical compound with the formula GeH₄, and the germanium analogue of methane. It is the simplest germanium hydride and one of the most useful compounds of germanium.
</span>In chemistry, sigma bonds (σ bonds) are the strongest type of covalent chemical bond. They are formed by head-on overlapping between atomic orbitals. Sigma<span> bonding is most simply defined for diatomic molecules using the language and tools of symmetry groups.
</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
Answer: Substances on Earth can exist in one of four phases, but mostly, they exist in one of three: solid, liquid or gas. Learn the six changes of phase: freezing, melting, condensation, vaporization, sublimation and deposition. Intermolecular forces are forces between molecules that determine the physical properties of liquids and solids. 11.2 Vaporization and Vapor Pressure— vaporization is the conversion of a liquid to a gas (vapor), and the quantity of heat associated with this phase change is known as the enthalpy (heat) of vaporization. When kinetic energy is increasing molecules are simply moving faster. However, when the potential energy is increasing molecules are changing phases. Therefore, when the potential energy is increasing is when the molecule is changing phases. Phase changes require either the addition of heat energy (melting, evaporation, and sublimation) or subtraction of heat energy (condensation and freezing). ... Changing the amount of heat energy usually causes a temperature change.
HOpe this helps..... Stay safe and have a Merry Christmas!!!!!!!!!! :D
The volume of concentrated HCl : 2.073 ml
<h3>Further explanation</h3>
Given
37% HCl by mass; density 1.19 g/mL
Required
The volume of concentrated HCl
Solution
Conversion to molarity :
37% x 1.19 g/ml =0.4403 g/ml
g/ml to mol/L :
=0.4403 g/ml x 1000 ml/L : 36.5 g/mol
=12.06 mol/L
or we can use formula :

Dilution formula :
M₁V₁=M₂V₂
12.06 M x V₁ = 0.1 M x 0.25 L
V₁ = 0.0021 L = 2.073 ml
Answer: Friction (Fk) = 46.2N.
Explanation: In the attachment, there is the drawing of the forces acting on the skiing person. As the person is in movement, the formula to calculate the friction is Fk = μk.N, where μk is the coefficient of kinetic friction and N is normal force. Normal force is the force necessary to keep a person "above" the ground. To find the normal force as suggested, we use the representation of the forces in the attachment. With it, it's shown that to calculate N:
cos 15° = 
N = Fg·cos 15°
N = 608·(-0.76)
N = - 461.9N
Now, with N and knowing the coefficient, which can be found in Physics Text Books and it is 0.1, we have:
Fk = 0.1·(-461.9)
Fk = - 46.2N
The friction is negative because it is pointing to the opposite side of the reference.