"v0" means that there are no friction forces at that speed
<span>mgsinΘ = (mv0²/r)cosΘ → the variable m cancels </span>
<span>sinΘ/cosΘ = tanΘ = v0² / gr
</span><span>Θ = arctan(v0² / gr) </span>
<span>When v > v0, friction points downslope: </span>
<span>mgsinΘ + µ(mgcosΘ + (mv²/r)sinΘ) = (mv²/r)cosΘ → m cancels: </span>
<span>gsinΘ + µ(gcosΘ + (v²/r)sinΘ) = (v²/r)cosΘ </span>
<span>µ = ((v²/r)cosΘ - gsinΘ) / (gcosΘ + (v²/r)sinΘ) </span>
<span>where Θ is defined above. </span>
<span>When v > v0, friction points upslope: </span>
<span>mgsinΘ - µ(mgcosΘ + (mv²/r)sinΘ) = (mv²/r)cosΘ → m cancels: </span>
<span>gsinΘ - µ(gcosΘ + (v²/r)sinΘ) = (v²/r)cosΘ </span>
<span>µ = (gsinΘ - (v²/r)cosΘ) / (gcosΘ + (v²/r)sinΘ) </span>
<span>where Θ is defined above. </span>
Answer:
yeah, Do you want me to check your answers? Yes is correct
(Hint: the time<span> to rise to the </span>peak<span>is one-half the </span>total hang-time<span>.).</span>
Answer:
0.438kg/ms-¹
Explanation:
Momentum, denoted by p, can be calculated by using the formula;
p = mv
Where;
m = mass (kg)
v = velocity (m/s)
Momentum (p) of bird = 0.216 kg × 5.87 m/s = 1.268kg/ms-¹
Momentum (p) of crawling baby = 7.29 kg kg × 0.234 m/s = 1.706kg/ms-¹
Having calculated the momentum of the bird to be 1.268kg/ms-¹, and the momentum of the baby to be 1.706kg/ms-¹, the difference in momentum between the flying bird and the crawling baby is:
{1.706kg/ms-¹ - 1.268kg/ms-¹} = 0.438kg/ms-¹