To get the percent yield, we will use this formula:
((Actual Yield)/(Theoretical Yield)) * 100%
Values given: actual yield is 220.0 g
theoretical yield is 275.6 g
Now, let us substitute the values given.
(220.0 grams)/(275.6 grams) = 0.7983
Then, to get the percentage, multiply the quotient by 100.
0.7983 (100) = 79.83%
Among the choices, the most plausible answer is 79.8%
<span>
</span>
The kidneys will excrete increased quantities of acid.
Explanation:
The kidneys will excrete excess H+ ions in the blood (remember H+ ions are responsible for acidity) until the acid-base balance is restored in the blood. Bicarbonates, on the other hand, will be aggressively reabsorbed by the renal tubules as the excess H+ are being excreted.
The acid base balance is mainly determined by the quantities of H⁺ and HCO₃⁻ ions in teh blood. These ions come from the dissociation of carbonic acid formed when carbon dioxide from tissues is dissolved in blood plasma.
ur mom ur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur mom
Answer:
The Kc is 1.36 (but this is not an option, may be the options are wrong, or may be I was .. Thanks!)
Explanation:
Let's think all the situation.
2 ICl(g) ⇄ I₂(g) + Cl₂(g)
Initially 0.20 - -
Initially I have only 0.20 moles of reactant, and nothing of products. In the reaction, an x amount of compound has reacted.
React x x/2 x/2
Because the ratio is 2:1, in the reaction I have the half of moles.
So in equilibrium I will have
(0.20 - x) x/2 x/2
Notice that I have the concentration in equilibrium so:
0.20 - x = 0.060
x = 0.14
So in equilibrium I have formed 0.14/2 moles of I₂ and H₂ (0.07 moles)
Finally, we have to make, the expression for Kc and remember that must to be with concentration in M (mol/L).
As we have a volume of 2L, the values must be /2
Kc = ([I₂]/2 . [H₂]/2) / ([ICl]/2)²
Kc = (0.07/2 . 0.07/2) / (0.060/2)²
Kc = 1.225x10⁻³ / 9x10⁻⁴
Kc = 1.36
Answer:
Atomic mass of nitrogen = 14.0067 amu.
Explanation:
Isotopes can be defined as two or more forms of a chemical element that are made up of equal numbers of protons and electrons but different numbers of neutrons.
Generally, the isotopes of a chemical element have the same chemical properties because of their atomic number but different physical properties due to their atomic weight (mass number).
The two isotopes of nitrogen are nitrogen-14 and nitrogen-15.
Given the following data;
Relative abundance of N-14 = 99.63%
Atomic mass of N-14 = 14.003
Relative abundance of N-15 = 0.37%
Atomic mass of N-15 = 15.000
The atomic mass is;
14.003 × (99.63/100) + 15.000 × (0.37/100)
Atomic mass = 14.003 × (0.9963) + 15.000 × (0.0037)
Atomic mass = 13.9512 + 0.0555
Atomic mass = 14.0067 amu.
<em>Therefore, the atomic mass of nitrogen is 14.0067 amu. </em>