Answer:
Pressure is inversely proportional to the area.
As we know the area covered by elephant legs is more so less pressure is exerted but in case of pointed shoe the area covered is less so more pressure is exerted.
Answer:
Solution ( for fourth attachment ) : 38°C
Tip : Remember the units °C when submitting answer
Explanation:
As you mentioned, we only need the solution for the fourth attachment.
The idea here is that the heat lost by the metal will be equal to the heat gained by the water. We know that the specific heat gained or lost will always be represented by the following formula,
q = m
c
Therefore if we substitute the know values and equate the two equations knowing that " q " is common among them --- ( 1 )
0.33
448
Remember that the change in temperature of iron (ΔT) would be represented by final temperature - initial temperature, or final temperature - 693. Similarly the change in temperature of water will be final temperature - 39. Now we can pose the final temperature as a, and solve for a through substitution --- ( 2 )
0.33
448
From here on take a look at the attachment. It represents how to receive get a through simple algebra. Here a, the final temperature, is about 38°C. In exact terms it will be
°C.
Answer:
The fore-brain consists of the cerebrum, thalamus, and hypothalamus. Mid-brain relays information between fore-brain and hind-brain. Mid-brain plays important role in developing motor functions like eye movement, auditory functions and visual processing. The crus cerebri connects the cerebral hemispheres to the cerebellum, contains a portion having a network of neurons that is responsible for arousal and alertness.
The answer is 4.7 m for the spàthan. this is a very question! I hope this helps my friend! :-)
Answer:
Explanation:
Law of conservation of momentum is applied in solving collision problem. When two body collides, their momentum after collision can be determined using the law.
The law States that the sum of momentum of two bodies before collision is equal to the sum of their momentum after collision. Before collision, both bodies moves with a different velocity while during some cases, the bodies moves with a common velocity after collision.
Whether they move with or without the same velocity depends on the type of collision that exists between them after the collision. After collision, some object sticks together and move with a common velocity while some doesn't.
If the bodies sticks together after collision, the type of collision that occur is inelastic (energy is not conserved) and if they splits after collision, the type of collision that occur is an elastic collision (energy is conserved).
Let m1 and m2 be the masses of the bodies
u1 and u2 be their velocities before collision
v1 and v2 be their velocities after collision.
According to the law;
m1u1 + m2u2 = m1v1 + m2v2
Note that momentum = mass × velocity of the body.