Answer:
movement of particles of object from one place to another
e.g
spreading of perfume in air
spreading of ink in water
Explanation:
Answer:
3.824 atm
Explanation:
From the ideal gas equation
P = mRT/MW × V
m is mass of testosterone = 12.9 g
R is gas constant = 82.057 cm^3.atm/mol.K
T is temperature of benzene solution = 298 K
MW is molecular weight of testosterone = 288.40 g/mol
V is volume of benzene solution = 286 ml = 286 cm^3
P = 12.9×82.057×298/288.4×286 = 3.824 atm
Answer:
electrophile(H⁺) is needed to react with alkene in the first step and nucleophile (OH⁻) is not available in the first step
Explanation:
If more heat is removed from the reaction the rate of reaction change as below to counter the action
The rate of the <em>forward reaction increase</em> and produces more <em>zinc chloride</em>
<u><em> explanation</em></u>
- <u><em> </em></u>The reaction of zinc and HCl to produce ZnCl and H2 <u><em>is </em></u> exothermic reaction, heat is produced as one product and by removing heat it favor forward reaction
- The position of equilibrium moves to the right since removing heat led to decrease of temperature and more zinc chloride is produced.
Question:
A chemistry student needs of 10 g isopropenylbenzene for an experiment. He has available 120 g of a 42.7% w/w solution of isopropenylbenzene in acetone. Calculate the mass of solution the student should use. If there's not enough solution, press the "No solution" button.
Answer:
The answer to the question is as follows
The mass of solution the student should use is 23.42 g.
Explanation:
To solve the question we note the following
A solution containing 42.7 % w/w of isopropenylbenzene in acetone has 42.7 g of isopropenylbenzene in 100 grams of the solution
Therefore we have 10 g of isopropenylbenzene contained in
100 g * 10 g/ 42.7 g = 23.42 g of solution
Available solution = 120 g
Therefore the quantity to used from the available solution = 23.42 g of the isopropenylbenzene in acetone solution.