1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OLga [1]
3 years ago
7

I NEED HELP WITH THIS ECONOMICS QUESTION PLEASEEE ILL GIVE YOU THE EXTRA POINTS IF YOU ARE ONLY CORRECT THANK YOU !!! I Accident

ally clicked on an answer but i don’t know

Physics
1 answer:
zhuklara [117]3 years ago
4 0

Answer:

Your answer is right, Fiscal policy is basically when a government makes changes to an economy and increasing government spending and decreasing taxes is used when they need to boost the economy, meaning Fiscal Policy in times of a recession.

Explanation:

You might be interested in
According to Archimedes’ principle, the mass of a floating object equals the mass of the fluid displaced by the object. Use this
Andrew [12]

Answer:

Part a)

\rho = 0.55 g/cm^3

Part b)

\rho_L = 1.49 g/cm^3

Part c)

Since we know that the base area will remain same always

so here the length and width of the object is not necessary to obtain the above data in such type of questions

Explanation:

Part a)

As we know that when cylinder float in the water then weight of the cylinder is counter balanced by the buoyancy force

So here we know

buoyancy force is given as

F_b = \rho_w V_{sub} g

F_b = (1 g/cm^3) (30 - 13.5) Ag

F_b = 16.5 Ag

Now we know that the weight of the cylinder is given as

W = \rho (30 cm)A g

now we have

\rho (30 cm) A g = 16.5 A g

\rho = 0.55 g/cm^3

Part b)

When the same cylinder is floating in other liquid then we will have

F_b = \rho_L (30 - 18.9 )A g

so we have

\rho_L (11.1) Ag = 0.55(30) Ag

\rho_L = 1.49 g/cm^3

Part c)

Since we know that the base area will remain same always

so here the length and width of the object is not necessary to obtain the above data in such type of questions

3 0
3 years ago
Block 1, of mass m₁ = 1.30 kg , moves along a frictionless air track with speed v₁ = 29.0 m/s. It collides with block 2, of mass
Alecsey [184]

Answer:

a. 37.7 kgm/s b. 0.94 m/s c. -528.85 J

Explanation:

a. The initial momentum of block 1 of m₁ = 1.30 kg with speed v₁ = 29.0 m/s is p₁ = m₁v₁ = 1.30 kg × 29.0 m/s = 37.7 kgm/s

The initial momentum of block 2 of m₁ = 39.0 kg with speed v₂ = 0 m/s since it is initially at rest is p₁ = m₁v₁ = 39.0 kg × 0 m/s = 0 kgm/s

So, the magnitude of the total initial momentum of the two-block system = (37.7 + 0) kgm/s = 37.7 kgm/s

b. Since the blocks stick together after the collision, their final momentum is p₂ = (m₁ + m₂)v where v is the final speed of the two-block system.

p₂ = (1.3 + 39.0)v = 40.3v

From the principle of conservation of momentum,

p₁ = p₂

37.7 kgm/s = 40.3v

v = 37.7/40.3 = 0.94 m/s

So the final velocity of the two-block system is 0.94 m/s

c. The change in kinetic energy of the two-block system is ΔK = K₂ - K₁ where K₂ = final kinetic energy of the two-block system = 1/2(m₁ + m₂)v² and K₁ = final kinetic energy of the two-block system = 1/2m₁v₁²

So, ΔK = K₂ - K₁ = 1/2(m₁ + m₂)v² - 1/2m₁v₁² = 1/2(1.3 + 39.0) × 0.94² - 1/2 × 1.3 × 29.0² = 17.805 J - 546.65 J = -528.845 J ≅ -528.85 J

7 0
4 years ago
What is the law of conservation of energy?
geniusboy [140]

Answer:

The answer is A

7 0
3 years ago
Which instrument would make rice vibrate easier, a tuba or a flute? Explain why. Hint: think about the difference between high a
algol13

Answer:

I assume the higher notes would make the rice vibrate more easily, so a flute.

8 0
3 years ago
Newton's Law of Gravitation says that the magnitude F of the force exerted by a body of mass m on a body of mass M is F = GmM r2
Nookie1986 [14]
<h2>Answers:</h2>

<h2>(a) </h2>

According to Newton's Law of Gravitation, the Gravity Force is:

F=\frac{GMm}{{r}^{2}}     (1)

This expression can also be written as:

F=GMm{r}^{-2}    (2)

If we derive this force F respect to the distance r between the two masses:

\frac{dF}{dr}dFdr=\frac{d}{dr}(GMm{r}^{-2})dr     (3)

Taking into account GMm are constants:

\frac{dF}{dr}dFdr=-2GMm{r}^{-3}     (4)

Or

\frac{dF}{dr}dFdr=-2\frac{GMm}{{r}^{3}}     (5)

<h2> (b) dF/dr represents the rate of change of the force with respect to the distance between the bodies.  </h2><h2 />

In other words, this means how much does the Gravity Force changes with the distance between the two bodies.

More precisely this change is inversely proportional to the distance elevated to the cubic exponent.

As the distance increases, the Force decreases.

<h2>(c) The minus sign indicates that the bodies are being forced in the negative direction.  </h2>

This is because Gravity is an attractive force, as well as, a central conservative force.

This means it does not depend on time, and both bodies are mutually attracted to each other.

<h2>(d) </h2>

In the first answer we already found the decrease rate of the Gravity force respect to the distance, being its unit N/km:

\frac{dF}{dr}dFdr=-2\frac{GMm}{{r}^{3}}     (5)

We have a force that decreases with a rate 1 \frac{dF_{1}}{dr}dFdr=4N/km when r=20000km:

4N/km=-2\frac{GMm}{{(20000km)}^{3}}     (6)

Isolating -2GMm:

-2GMm=(4N/km)({(20000km)}^{3})     (7)

In addition, we have another force that decreases with a rate 2 \frac{dF_{2}}{dr}dFdr=X when r=10000km:

XN/km=-2\frac{GMm}{{(10000km)}^{3}}     (8)

Isolating -2GMm:

-2GMm=X({(10000km)}^{3})     (9)

Making (7)=(9):

(4N/km)({(20000km)}^{3})=X({(10000km)}^{3}       (10)

Then isolating X:

X=\frac{4N/km)({(20000km)}^{3}}{{(10000km)}^{3}}  

Solving and taking into account the units, we finally have:

X=-32N/km>>>>This is how fast this force changes when r=10000 km

7 0
4 years ago
Read 2 more answers
Other questions:
  • Rock that become hot enough to melt and flow are referred to as blank by scientists
    9·1 answer
  • The line of sight from a small boat to the light at the top of a 45-foot lighthouse built on a cliff 25 feet above the water mak
    5·2 answers
  • Name the effect of current in electroplating
    5·1 answer
  • Carmen and Judi dock a canoe. 80.0-kg Carmen moves forward at 4.0 m/s as she leaves the canoe. At
    13·1 answer
  • When looking at the Impulse of an object during a collision, we often use "average force"? When an object hits something, is the
    8·1 answer
  • What can you say about the relationship between the index of refraction and the wavelength of a color?
    6·1 answer
  • A pulley has a mechanical advantage of 1.
    6·1 answer
  • What is the speed of line A round answer to the nearest hundreths and do not include units (s=d/t)​
    12·1 answer
  • Does energy generation through a wind generator seem to depend more on potential or kinetic energy? Explain.
    11·1 answer
  • Difference between acceleration due to gravity and gravity​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!