Answer:
B) exothermic.
Explanation:
Hello!
In this case, we need to keep in mind that exothermic reactions release heat, so they increase the temperature as the final energy is less than the initial energy; in contrast, endothermic reactions absorb heat, so they decrease the temperature as the final energy is greater than the initial energy.
In such a way, when a dissolution process shows off a negative enthalpy of dissolution, we infer it is an exothermic process due to the aforementioned; therefore, the answer is:
B) exothermic
.
Best regards!
Are you sure it isn’t SO3+H2O = H2SO4 because that would be combination (synthesis) A+ B=AB
Or SO3 + H2SO4 = H2S2O7
Because that would also be synthesis
3.52g BiCl3 × 1 mol BiCl3/ 315.34g BiCl3 × 3 mol Cl/ 2 mol BiCl3 × 70.906g Cl/ 1 mol Cl= 1.187 g Cl
Answer:
20.79 kilojoules
Explanation:
Using Q = m×c×∆T
Where;
Q = Quantity of heat (J)
c = specific heat capacity of solid DMSO (1.80 J/g°C)
m = mass of DMSO
∆T = change in temperature
According to the provided information, m= 50g, initial temperature = 19.0°C, final temperature= 250.0°C
Q = m×c×∆T
Q = 50 × 1.80 × (250°C - 19°C)
Q = 90 × 231
Q = 20790 Joules
To convert Joules to kilojoules, we divide by 1000 i.e.
20790/1000
= 20.79 kilojoules
Hence, 20.79 kilojoules of energy is required to convert 50.0 grams of solid DMSO to gas.
Carbonyl group contains oxygen atom.