<span>Radioactive isotopes have been used commercially in all these applications.
The last option (D) is your answer
</span>
Answer:
- <em><u>Step 2 (the slow step).</u></em>
Explanation:
The rate-determining step is always the slow step of a mechanism.
That is so, because it is the slow step which limits the reaction.
Imaging that for assembling a toy you have process of three steps:
- 1. order ten pieces, which you can do in 1 minute: meaning that you can order order the pieces for 60/1 = 60 toys in 1 hour.
- 2. glue the pieces and hold the toy until the glue hardens, which takes 1 hour: meaning finishingh 1 toy in 1 hour.
- 3. pack the toy, which takes 2 minutes: meaning that you can pack 60/2 = 30 toys in one hour.
The time to glue and hold one toy until the glue hardens determines that you can assemble 1 toy in 1 hour and not 60 toys or 30 toys.
Thus, the step that determines the rate at which the reaction happens is the slowest step: step 2.
Answer:
0.0900 mol/L
Explanation:
<em>A chemist makes 330. mL of nickel(II) chloride working solution by adding distilled water to 220. mL of a 0.135 mol/L stock solution of nickel(II) chloride in water. Calculate the concentration of the chemist's working solution. Round your answer to significant digits.</em>
Step 1: Given data
- Initial concentration (C₁): 0.135 mol/L
- Initial volume (V₁): 220. mL
- Final concentration (C₂): ?
- Final volume (V₂): 330. mL
Step 2: Calculate the concentration of the final solution
We prepare a dilute solution from a concentrated one. We can calculate the concentration of the working solution using the dilution rule.
C₁ × V₁ = C₂ × V₂
C₂ = C₁ × V₁/V₂
C₂ = 0.135 mol/L × 220. mL/330. mL = 0.0900 mol/L
Energy and mass have not been created, the water has simply been changed to a different form, but it is still present, and could be condense down into the same form with the same mass.
Answer:
°C = K - 273.15
Explanation:
Take your Kelvin temperature and subtract 273.15. Your answer will be in Celsius