The speed of sound is greater in ice (4000 m/s), then in water (1500 m/s), then in air (340 m/s). The explanation for this is the differente state of the matter in the three cases.
In fact, sound waves travel faster in solids (like ice), then in liquids (like water), then in gases (like air). This is because the speed of the sound wave depends on the density of the medium: the greater the density, the faster the sound wave. This can be easily understood by thinking at how a sound wave propagates: a sound wave is a vibration of molecules, which is transmitted throughout the medium by collision of the molecules. Therefore, the smaller the spacing between the molecules (such as in solids), the more efficient is the propagation, and so the sound wave is faster. On the contrary, there is a large spacing between molecules in gases (such as in the air), so there are less collisions between the molecules and so the wave is not transmitted efficiently, and so it has less velocity.
Sound at 70 dB is 70 dB louder than the human reference level. That's 10⁷ times as much as the reference sound power.
Sound at 73 dB is 73 dB louder than the human reference level. That's 10⁷.³ or 2 x 10⁷ times as much as the reference sound power.
Sound at 80 dB is 80 dB louder than the human reference level. That's 10⁸ or 10 x 10⁷ times as much as the reference sound power.
Now we can adumup:
Intensity of all 3 sources = (10⁷) + (2 x 10⁷) + (10 x 10⁷)
Intensity = (13 x 10⁷) times the sound power reference intensity.
Intensity in dB = 10 log (13 x 10⁷) = 10 (7 + log(13)
Intensity = 70 + 10 log(13)
Intensity = 70 + 10 (1.114)
Intensity = 70 + 11.14
Intensity = <em>81.14 dB</em>
<em>______________________________________</em>
Looking at the questioner's profile, I seriously wonder whether I'll ever get a comment in return from this creature, and how I'll ever find out if my solution is correct. For that matter, I'm also seriously questioning how and whether my solution will ever be used for anything.
It is potential energy because the band is not in movement, th band has the potential to move.
Nothing happens to the mirror.
However, if the ray is within some suitable range of
wavelengths, the ray is reflected from the mirror's surface.