Answer:
Option b. 0.048 M
Explanation:
We have the molecular weight and the mass, from sulcralfate.
Let's convert the mass in g, to moles
1 g . 1 mol / 2087 g = 4.79×10⁻⁴ moles.
Molarity is mol /L
Let's convert the volume of solution in L
10 mL . 1L/1000 mL = 0.01 L
4.79×10⁻⁴ mol / 0.01 L = 0.048 mol/L
Answer:
pH = 2.46
Explanation:
Hello there!
In this case, since this neutralization reaction may be assumed to occur in a 1:1 mole ratio between the base and the strong acid, it is possible to write the following moles and volume-concentrations relationship for the equivalence point:

Whereas the moles of the salt are computed as shown below:

So we can divide those moles by the total volume (0.021L+0.0066L=0.0276L) to obtain the concentration of the final salt:
![[salt]=0.01428mol/0.0276L=0.517M](https://tex.z-dn.net/?f=%5Bsalt%5D%3D0.01428mol%2F0.0276L%3D0.517M)
Now, we need to keep in mind that this is an acidic salt since the base is weak and the acid strong, so the determinant ionization is:

Whose equilibrium expression is:
![Ka=\frac{[C_6H_5NH_2][H_3O^+]}{C_6H_5NH_3^+}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BC_6H_5NH_2%5D%5BH_3O%5E%2B%5D%7D%7BC_6H_5NH_3%5E%2B%7D)
Now, since the Kb of C6H5NH2 is 4.3 x 10^-10, its Ka is 2.326x10^-5 (Kw/Kb), we can also write:

Whereas x is:

Which also equals the concentration of hydrogen ions; therefore, the pH at the equivalence point is:

Regards!
Answer:
v = 7.3 × 10⁶ m/s
Explanation:
Given data:
Velocity of electron = ?
Wavelength = 100 pm
Solution:
Formula:
λ = h/mv
λ = wavelength
h = planck's constant
m = mass
v = velocity
Now we will put the values in formula.
100 ×10⁻¹² m = 6.63 × 10⁻³⁴ j.s / 9.109 × 10⁻³¹ kg × v
v = 6.63 × 10⁻³⁴ kg.m²/s / 9.109 × 10⁻³¹ kg ×100 ×10⁻¹² m
v = 6.63 × 10⁻³⁴ m/s /910.9 × 10⁻⁴³
v = 0.0073 × 10⁹ m/s
v = 7.3 × 10⁶ m/s
Answer:
8 to 8.5 since that is the recommended and people usualy sleep more than that
Answer:
0.26 mol
Explanation:
using general gas equation
PV=nRT
V=4.1litre= 4.1 dm³
P= 1.78 atm
R= 0.0821
PUT VALUES