To calculate the pKa of the weak acid, we use the Henderson-Hasselbalch equation. It is expressed as pH = pKa - log [HA]/[A-]. This equation takes into account the concentration of the substance that does not dissociates into ions since it is a weak acid. We caculate as follows:
pH = pKa - log [HA]/[A-]
9 = pKa - log 1/100
pKa = 7
Answer:
-133.2 kJ
Explanation:
Let's consider the following balanced equation.
4 KClO₃(s) → 3 KClO₄(s) + KCl(s)
We can calculate the standard Gibbs free energy of the reaction (ΔG°rxn) using the following expression.
ΔG°rxn = 3 mol × ΔG°f(KClO₄(s)) + 1 mol × ΔG°f(KCl(s)) - 4 mol × ΔG°f(KClO₃(s))
ΔG°rxn = 3 mol × (-303.1 kJ/mol) + 1 mol × (-409.1 kJ/mol) - 4 mol × (-296.3 kJ/mol)
ΔG°rxn = -133.2 kJ
The gibbs free energy of the reaction of diamond to graphite is equal to -2.90 kJ/mol. The free energy is negative which means that the reaction is spontaneous. Therefore, the forward reaction is favored. Hope this helps. Have a nice day.