Explanation:
ask to nirajan shrestha
search on fb
he is good science teacher❣❣❣
Answer:
E. Kepler's second law says the planet must move fastest when it is closest, not when it is farthest away.
Explanation:
We can answer this question by using Kepler's second law of planetary motion, which states that:
"A line connecting the center of the Sun with the center of each planet sweeps out equal areas in equal intervals of time"
This means that when a planet is further away from the Sun, it will move slower (because the line is longer, so it must move slower), while when the planet is closer to the Sun, it will move faster (because the line is shorter, so it must move faster).
In the text of this problem, it is written that the planet moves at 31 km/s when is close to the star and 35 km/s when it is farthest: this is in disagreement with what we said above, therefore the correct option is
E. Kepler's second law says the planet must move fastest when it is closest, not when it is farthest away.
Answer:
I'm pretty sure it's the third one where velocity goes from positive to negative
Explanation:
the positive velocity is before the object hits the ground and the negative is after
<span>D. Pressure increases with increasing depth.
This occurs because there is more weight above you to increase the pressure.
</span>
The best and most correct answer among the choices provided by your question is the first choice or letter A.
Heat transfers associated with phase changes known as latent or "hidden" heats because h<span>eat absorbed or released in a phase change is measured in kJ while temperature is measured in °C.</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!