Formula for potential energy is V=mgh, where m is mass in KG, g is earth acceleration (10 m/s^2), and h its height in meters. We know mass, acceleration is constant and also known, we know height also. Lets substitute
V=75*10*300=225000[J]=225[kJ] - its the answer
Answer:
The chance in distance is 25 knots
Explanation:
The distance between the two particles is given by:
(1)
Since A is traveling north and B is traveling east we can say that their displacement vector are perpendicular and therefore (1) transformed as:
(2)
Taking the differential with respect to time:
(3)
where
and
are the respective given velocities of the boats. To find
and
we make use of the given position for A,
, the Pythagoras theorem and the relation between distance and velocity for a movement with constant velocity.

with this time, we know can now calculate the distance at which B is:

and applying Pythagoras:

Now substituting all the values in (3) and solving for
we get:

Answer:
Why do insects fly so high?
Because the angle of attack is so high, a lot of momentum is transferred downward into the flow. These two features create a large amount of lift force as well as some additional drag. The important feature, however, is the lift.
Why an Aeroplane flying has kinetic
A flying aeroplane has potential energy has it flies above the ground level. And since the aeroplane is flying motion is associated with it and thus possesses kinetic energy. Hence a flying aeroplane has both potential and kinetic energ
Explanation:
The equation for electrical power is<span>P=VI</span>where V is the voltage and I is the current. This can be rearranged to solve for I in 6(a).
6(b) can be solved with Ohm's Law<span>V=IR</span>or if you'd like, from power, after substituting Ohm's law in for I<span>P=<span><span>V2</span>R</span></span>
For 7, realize that because they are in parallel, their voltages are the same.
We can find the resistance of each lamp from<span>P=<span><span>V2</span>R</span></span>Then the equivalent resistance as<span><span>1<span>R∗</span></span>=<span>1<span>R1</span></span>+<span>1<span>R2</span></span></span>Then the total power as<span><span>Pt</span>=<span><span>V2</span><span>R∗</span></span></span>However, this will reveal that (with a bit of algebra)<span><span>Pt</span>=<span>P1</span>+<span>P2</span></span>
For 8, again the resistance can be found as<span>P=<span><span>V2</span>R</span></span>The energy usage is simply<span><span>E=P⋅t</span></span>