2 because that’s correct I I I I I I I I I I I I I I I I I I I
V=IR so voltage is directly proportional to current. So for a given resistance increasing the voltage will result in a high current as well. This is because resistance is proportional to the voltage over the current. Ex: I=V/R
Hope this helped. THANKYOU for asking. <span />
Tension is the force causing the path. It is always directed inward for circular motion. To hit the ceiling you need B. The stopper will travel along the tangent line it was moving when released (when tension goes to 0). This is upward in B so it will keep going up to the ceiling.
The velocity is pointed along the tangent line at all times (parallel to the edge of the circle at any point)
The number of pulse beats elapsed before the rubber ball hits the ground can be obtained when you carry out the experiment yourself. However, the pulse beat method of timing used by Galileo is not reliable because it varies from time to time.
Galileo was interested in studying how objects fall. His discovery was that all objects had the same acceleration irrespective of their mass. This observation was in direct contrast to Aristotle's assertion that the velocity of objects is proportional to their mass.
However, he used his pulse beats as timer during the experiment. This method is unreliable because the pulse beats of a person changes depending on the person's state of mind. A stop clock could have been a more reliable timer than pulse beats.
Learn more: brainly.com/question/7201885
Answer:
I = 2.667 kg m²
Explanation:
The moment of inertia of a body can be calculated by the expression
I = ∫ L² dm
For high symmetry bodies the expressions of the moment of inertia are tabulated, for a rod with its axis of rotation at its midpoint it is
I =
m L²
let's calculate
I =
2 4²
I = 2.667 kg m²