Given:
P = 123 kPa
V = 10.0 L
n = 0.500 moles
T = ?
Assume that the gas ideally, thus, we can use the ideal gas equation:
PV = nRT
where R = 0.0821 L atm/mol K
123 kPa * 1 atm/101.325 kPa * 10.0 L = 0.500 moles * 0.0821 Latm/molK * T
solve for T
T = 295.72 K<span />
Answer:
A
Explanation:
Element A has 3 electrons in outermost shell so its valency is 3. It will loose 3 electrons to attain stability, as loss of 3 electrons is easier than gain of 5 electrons.
Valency of B is −2 as it will gain 2 electrons to attain stability and combine with other atom.
Valency of A⟶+3
Valency of B⟶−2
(Refer to Image)
Cross multiply valency of A and B
∴A2B3 compound will be formed.
Answer:
The true statement is: Spontaneous reactions tend to lead to higher entropy.
Explanation:
The spontaneity of a reaction is linked to the value of Gibbs free energy (ΔG°). The more negative is this value, the more spontaneous is a reaction. At the same time, Gibbs free energy depends on enthalpy (ΔH°) and entropy (ΔS°), according to the following expression:
ΔG° = ΔH° - T.ΔS°
We can see that higher entropies (higher ΔS°) lead to more negative ΔG°, thus, more spontaneous reactions.