Answer:
d = 0.93 g/cm³
Explanation:
Given data:
Mass of object = 28 g
Volume of object = 3cm×2cm×5cm
density of object = ?
Solution:
Volume of object = 3cm × 2cm ×5cm
Volume of object = 30 cm³
Density of object:
d = m/v
by putting values,
d = 28 g/ 30 cm³
d = 0.93 g/cm³
Answer:
The answer to your question is P = 0.18 atm
Explanation:
Data
mass of O₂ = 0.29 g
Volume = 2.3 l
Pressure = ?
Temperature = 9°C
constant of ideal gases = 0.082 atm l/mol°K
Process
1.- Convert the mass of O₂ to moles
16 g of O₂ -------------------- 1 mol
0.29 g of O₂ ---------------- x
x = (0.29 x 1)/16
x = 0.29/16
x = 0.018 moles
2.- Convert the temperature to °K
Temperature = 9 + 273 = 282°K
3.- Use the ideal gas law ro find the answer
PV = nRT
-Solve for P
P = nRT/V
-Substitution
P = (0.018 x 0.082 x 282) / 2.3
-Simplification
P = 0.416/2.3
-Result
P = 0.18 atm
Answer:
The volume is 310 L
Explanation:
We use the ideal gas formula, with the constant R = 0.082 l atm / K mol. The STP conditions are 1 atm pressure and 273 K temperature. Solve for the formula, V (volume):
PV= nRT ---> V= (nRT)/P
V=( 14 mol x 0,082 l atm /K mol x 273 K)/ 1 atm
<em>V= 313,404 L</em>
Answer:- Molarity of the acid solution is 0.045M.
Solution:- The balanced equation for the reaction of given acid and base is:

From the balanced equation, they react in 1:1 mol ratio. So, we could easily solve the problem using the equation:

where,
is the molarity of acid,
is the molarity of base,
is the volume of acid and
is the volume of base.
Let's plug in the given values in the equation:

on rearranging the above equation:

= 0.045M
So, the molarity of the acid solution is 0.045M.
Answer:
use chemical equation to that answer