Answer:
D. The electrochemical reaction of the battery must be reversible.
Explanation:
The batteries are based on the production of an electric flux given by a<u> redox reaction</u>. This reaction is <u>spontaneous</u> and is<u> thermodynamically favored</u>.
Thus, when the reactants to the reaction are finished, the flow of current stops and ends. Therefore, when current is administered from another source, the reaction <u>changes its direction</u> and reagents that were previously consumed begin to occur. Therefore the condition for it to be <u>rechargeable</u> is that the reaction can go <u>forward or backward</u>, that is, it is <u>reversible</u>.
Answer:25,06 kJ of energy must be added to a 75 g block of ice.
ΔHfusion(H₂O) = 6,01 kJ/mol.
T(H₂O) = 0°C.
m(H₂O) = 75 g.
n(H₂O) = m(H₂O) ÷ M(H₂O).
n(H₂O) = 75 g ÷ 18 g/mol.
n(H₂O) = 4,17 mol.
Q = ΔHfusion(H₂O) · n(H₂O)
Q = 6,01 kJ/mol · 4,17 mol
Q = 25,06 kJ.
Explanation:
An SI base unit for measuring length would be meters.
Answer:
the number of protons and neutrons at both terminals are equal
Explanation:
When the number of positive charge and negative charge are both equally the terminal, it becomes neutral and out of charge, because first it undergo enough chemical reaction and there is no remaining tendency for positive and negative charges to get separated. When this tendency dies, the battery also will run out of charge.