Answer:
If you have 1 mole of N2 (or any other gas for that matter) under STP conditions it will occupy a volume of 22.4 L. This is known as the “standard molar volume”. So, if you know the number of moles of gas that you have, you can use a simple ratio (1 mole : 22.4 L) to determine the volume of the gas
Explanation:
Vapour pressure of system depends upon intermolecular forces of interaction. Greater the interaction, larger will the vapour pressure, more will be the boiling point.
Answer 1:
CH4 stands for methane and CH3Cl named as chloromethane. In methane, all the valances of C atom is satisfied by hydrogen. Due to this, it has zero dipole moment. While, in case of CH3Cl, one of the valance is satisfied by an electronegative element i.e. Cl. Due to this, it acquires a polar character. Also, it has a net dipole moment. Due to this, CH3Cl exhibits dipole-dipole intermolecular force of attraction, which is absent in CH4. Hence, CH3Cl has lower vapor pressure as compared to CH4.
Answer 2:
H2CO is named as formaldehyde, while CH3OH is named as methyl alcohol. In case of methyl alcohol, hydrogen atom (an electropositive atom) is bonded to oxygen (a highly electronegative element). This is absent in case of formaldehyde. Due the this, methyl alcohol as greater polarity as compared to formaldehyde. Due the greater polarity, vapour pressure of CH3OH is less as compared to H2CO.
Answer 3:
<span>CH3CH2CH2OH is named as propanol or propyl alcohol. Propyl alcohol, has longer chain length as compared to methyl alcohol (CH3OH). Both of this compounds has a polar character due to presence of -OH functional group. However, due to long chain of propyl alcohol, polar character increases. This can be attributed the +I effect of CH3 group. Due to this, intermolecular forces of interaction are higher in propanol, thereby decreasing its vapor pressure as compared to methanol. </span>
Answer : The pH of a 0.1 M phosphate buffer is, 6.86
Explanation : Given,

Concentration of acid = 0.1 M
Concentration of conjugate base (salt) = 0.1 M
Now we have to calculate the pH of buffer.
Using Henderson Hesselbach equation :
![pH=pK_a+\log \frac{[Salt]}{[Acid]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BSalt%5D%7D%7B%5BAcid%5D%7D)
Now put all the given values in this expression, we get:


Therefore, the pH of a 0.1 M phosphate buffer is, 6.86
Answer:

Explanation:
First reaction gives you the number of moles or the mass from Carbon and hydrogen
for carbon:


Analogously for hydrogen:
0.0310g
have 0.0034gH or 0.0034mol of H
In the second reaction you can obtain the amount of nitrogen as a percentage and find the mass of N in the first sample.

now

this is equivalet to 0.002mol of N
with this information you can find the mass of oxygen by matter conservation.

this is equivalent to 0.004molO
finally you divide all moles obtained between the smaller number of mole (this is mol of H)

and you can multiply by 5 to obtain: 
Answer:
Baking, microwave, heating system for your house, water boiler, fridge.