Answer:
False
Explanation:
The torque exerted by a force is given by:

where
F is the magnitude of the force
d is the distance between the point of application of the force and the pivot
is the angle between the directions of F and d
We see that the magnitude of the torque depends on 3 factors. In this problem, we have 2 forces of equal magnitude (so, equal F). Moreover, one of the forces (let's call it force 1) acts farther from the pivot than force 2, so we have

However, this does not mean that force 1 produces a greater torque. In fact, it also depends on the angle at which the force is applied. For instance, if the first force is applied parallel to d, then we have

and the torque produced by this force would be zero.
So, the statement is false.
Answer: To solve for the net magnetic field of two circular loops of wire, each containing a single turn
B net= √[( NUI / 2R)^2 × ( NUI / 2R)^2]
Where B net = Net magnetic field
B net = √2 × (NUI/ 2R)
B net =[ √2 × 1 × ( 4 × 3.142 × 10^-7) × (1.8)] ÷ 2 × 0.034
B net = { 1.414 × (0.00000126) × (1.8)}÷ 0.068
B net = 4.72 × 10^-5 T
Answer:

Explanation:
Since the surface is frictionless, momentum will be conserved. If the bullet of mass
has an initial velocity
and a final velocity
and the block of mass
has an initial velocity
and a final velocity
then the initial and final momentum of the system will be:


Since momentum is conserved,
, which means:

We know that the block is brought to rest by the collision, which means
and leaves us with:

which is the same as:

Considering the direction the bullet moves initially as the positive one, and writing in S.I., this gives us:

So kinetic energy of the bullet as it emerges from the block will be:

The process of arriving at a general conclusion based on the observation of specific examples is called inductive reasoning. It is a logical process where multiple premises are combined to obtain a conclusion. It is <span>used in applications that involve prediction and forecasting.</span>
Explanation:
The ratio of the areas is the square of the ratio of the radii.
A/A = 3.16² = 9.99
The ratio of the volumes is the cube of the ratio of the radii.
V/V = 3.16³ = 31.6