Answer:
a = 0m/s²
Explanation:
Average acceleration = (change in velocity)/(time it takes). Since the car's change in velocity is zero, its acceleration is zero.
Answer:
a) 1.73*10^5 J
b) 3645 N
Explanation:
106 km/h = 106 * 1000/3600 = 29.4 m/s
If KE = PE, then
mgh = 1/2mv²
gh = 1/2v²
h = v²/2g
h = 29.4² / 2 * 9.81
h = 864.36 / 19.62
h = 44.06 m
Loss of energy = mgΔh
E = 780 * 9.81 * (44.06 - 21.5)
E = 7651.8 * 22.56
E = 172624.6 J
Thus, the amount if energy lost is 1.73*10^5 J
Work done = Force * distance
Force = work done / distance
Force = 172624.6 / (21.5/sin27°)
Force = 172624.6 / 47.36
Force = 3645 N
At the peak of its flight ALL the energy given to the rocket is potential energy (its velocity is zero) and that is calculated as mgh So Energy given to rocket = mgh Energy expended by engine = F x D (D= height where engine stops) Energy 'lost' to drag is the difference between the two values. please if this helped mark it as the brainiest answer.
Answer:14 m/s
Explanation:
Kinetic energy(ke)=175J
Momentum(M)=25kgm/s
Speed=v
Mass=m
Ke=(m x v x v)/2
175=(mv^2)/2
Cross multiply
175 x 2=mv^2
350=mv^2
Momentum=mass x velocity
25=mv
m=25/v
Substitute m=25/v in 350=mv^2
350=25/v x v^2
350=25v^2/v
v^2/v=v
350=25v
v=350/25
v=14 m/s