The Intermolecular force is a type of force which exists between particles in an Ideal gas.
<h3>What type of force which exists between particles in an Ideal gas?</h3>
Intermolecular forces are considered weaker attractions that hold molecules in gas close together. This force of attraction is present between molecules or particles.
So we can conclude that the Intermolecular force is a type of force which exists between particles in an Ideal gas.
Learn more about attraction here: brainly.com/question/1308963
#SPJ1
Benzaldehyde or C6H5CHO would not undergo the aldol condensation because it does not contain an alpha-hydrogen in its structure. Aldol condensation is a type of reaction that happens between an enolate and an aldehyde or ketone leading to a alkene that has a planar structure. The lack of an alpha-hydrogen would not allow for it to undergo such process since it cannot enolize. Benzaldehyde undergoes a nucleophilic reaction known as Claisen-Schmidt condensation. It has somehow same mechanism of the aldol reaction however, the nucleophilic attack on the carbonyl happens even without the alpha-hydrogen but with an enolate that is from a ketone.
Answer:
it is b because its releases heat in to all directions and not b because it staying inside and not releasing anything :)
Explanation:
Answer:
hope it helps you a little
1.
V = 200 mL (volume)
c = 3 M = 3 mol/L (concentration)
First we convert mL to L:
200 mL = 0.2 L
Then we calculate the moles using the formula: n = V × c = 0.2 L × 3 mol = 0.6 mol
Finally, we just use the molar mass of CaF2 to calculate the actual mass:
molar mass = 78 g/mol
The formula is: m = n × mm (mass = moles × molar mass)
m = 0.6 mol × 78 g/mol = 46.8 g
2.
For this question the steps are exactly like the first question.
V = 50mL = 0.05 L
c = 12 M = 12 mol/L
n = V × c = 0.05 L × 12 mol/L = 0.6 mol
molar mass (HCl) = 36.5 g/mol
m = n × mm = 0.6 mol × 36.5 g/mol = 21.9 g.
3.
The steps for this question are the opposite way.
m(K2CO3) = 250 g
molar mass = 138 g/mol
n = m ÷ mm = 1.81 mol
c = 2 mol/L
V = n ÷ c = 1.81 mol ÷ 2 mol/L = 0.905 L = 905 mL