Explanation:
Hey there!
According to the law of gravitation, the factors that affects the gravity are:
- Mass of the heavenly bodies.
- Distance from the centre of the body to next body.
Mass of heavenly bodies:<em>The </em><em>ma</em><em>s</em><em>s </em><em>of </em><em>heavenly</em><em> bodies</em><em> </em><em>affect</em><em> </em><em>the </em><em>gravity</em><em>.</em><em> </em><em>We </em><em>know </em><em>that </em><em>gravity</em><em> is</em><em> </em><em>directly</em><em> proportional</em><em> to</em><em> the</em><em> </em><em>mass </em><em>of</em><em> heavenly</em><em> bodies</em><em>.</em><em> </em><em>so,</em><em> </em><em>when </em><em>the </em><em>mass </em><em>is </em><em>more </em><em>there </em><em>is </em><em>more </em><em>gravity </em><em>and </em><em>where</em><em> </em><em>there </em><em>is </em><em>less </em><em>mass </em><em>there </em><em>is </em><em>less </em><em>gravity</em><em>.</em>
Distance from the centre of the body to next body: <em>It </em><em>is</em><em> </em><em>one </em><em>of</em><em> the</em><em> </em><em>factor </em><em>to </em><em>influence</em><em> </em><em>gravity</em><em>.</em><em> </em><em>When </em><em>there </em><em>is</em><em> </em><em>more </em><em>distance</em><em> </em><em>there </em><em>is</em><em> </em><em>less </em><em>gravity</em><em> </em><em>and </em><em>where </em><em>there </em><em>is </em><em>distance</em><em> </em><em>more </em><em>force </em><em>is </em><em>there.</em><em> </em><em>Is </em><em>means </em><em>gravity</em><em> is</em><em> </em><em>inversely</em><em> proportional</em><em> to</em><em> </em><em>the </em><em>distance</em><em> </em><em>between </em><em>the </em><em>bodies</em><em>.</em>
<em><u>Hope </u></em><em><u>it</u></em><em><u> helps</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
You can tell that the atom is in the excited state because:
- Electron configuration should follow the 2-8-8-2 rule, meaning that the inner shell should be filled before the next shell can start holding electrons.
- Instead of the atom's electron configuration being in the ground state at 2-8-8-1, electrons from the second shell have jumped to the third.
Answer:
6.4 × 10^-10 M
Explanation:
The molar solubility of the ions in a compound can be calculated from the Ksp (solubility constant).
CaF2 will dissociate as follows:
CaF2 ⇌Ca2+ + 2F-
1 mole of Calcium ion (x)
2 moles of fluorine ion (2x)
NaF will also dissociate as follows:
NaF ⇌ Na+ + F-
Where Na+ = 0.25M
F- = 0.25M
The total concentration of fluoride ion in the solution is (2x + 0.25M), however, due to common ion effect i.e. 2x<0.25, 2x can be neglected. This means that concentration of fluoride ion will be 0.25M
Ksp = {Ca2+}{F-}^2
Ksp = {x}{0.25}^2
4.0 × 10^-11 = 0.25^2 × x
4.0 × 10^-11 = 0.0625x
x = 4.0 × 10^-11 ÷ 6.25 × 10^-2
x = 4/6.25 × 10^ (-11+2)
x = 0.64 × 10^-9
x = 6.4 × 10^-10
Therefore, the molar solubility of CaF2 in NaF solution is 6.4 × 10^-10M
Democritus was the first to propose the idea of the atom. He said the atom was just this tiny, solid sphere. However, he used no scientific evidence to support his claim, so a guy named John Dalton did some experimenting and basically backed up Democritus' claim with evidence. Then, a guy named J.J. Thompson came along and said the atom was not solid and that is consisted of tiny negatively charged particles(electrons) and he came up with the Plum Pudding model which is just a tiny sphere with a punch of random scattered dots in it. After that, Ernest Rutherford did experiments and found that the tiny sphere is made up of mostly empty space with a tiny, dense, positively charged sphere inside of it, and the negatively charged particles just randomly float around it. Neils Bohr then said that the electrons take specific, circular, evenly spaced paths. Then, finally, we come to the Quantum Mechanical Model which is the one accepted today. This model basically vetos Bohr's idea and has a nucleus inside of an electron cloud, which is where the electrons are found.