Answer:
Explanation:
1)<u> Convert the distance, 13.1 km to miles</u>
1 = 1 mi / 1.61 km
- 13.1 km [ 1 mi / 1.61 km ] = 8.1336 mi
2)<u> Use 6.2 mi/h as a converstion factor between distance and time</u>
- 8.1366 mi × 1 / [6.2 mi/h] = 1.3124 h
3) <u>Convert 1.3124 h to minutes</u>
- 1.3124 h × [ 60 min/h] = 78.7 min
Rounding to the nearest minutes (two significant figures):
Answer:
3H₂SO₄ + 2Al₂(SO₄)₃ → Al₂(SO₄)₃ + 3H₂
Explanation:
3H₂SO₄ + 2Al₂(SO₄)₃ → Al₂(SO₄)₃ + 3H₂
In this type of reaction, one substance is replacing another:
A + BC → AC + B
In a single displacement reaction, atoms replace one another based on the activity series. Elements that are higher in the activity series. Also, if the element that is to replace the other in a compound is more reactive the reaction will occur. If it is less reactive, there will be no reation.
In the first equation, fluorine is more reactive than bromine. Therefore, bromine cannot replace bromine.
In the second equation, the displacement is between hydrogen and aluminium. Hydrogen is lower in the activity series, this implies that aluminum will replace it.
Answer:
Chemical reaction involves the breaking of bonds in the reactants and formation of bonds in the products. ... If a reaction is exothermic, more energy is released when the bonds of the products are formed than it takes to break the bonds of the reactants. This is the reason for temperature change during a reaction.
Explanation:
Here are just a few everyday demonstrations that temperature changes the rate of chemical reaction: Cookies bake faster at higher temperatures. Bread dough rises more quickly in a warm place than in a cool one.