Given:
No of atoms present= 8.022 x 10^23 atoms
Now we know that 1 mole= 6.022 x 10^23 atoms
Hence number of moles present in 8.022 x 10^23 atoms is calculated as below.
Number of moles
= 8.022 x 10^23/6.022x 10^23
=1.3 moles.
Hence we have 1.3 moles present.
Answer:
No net change in reaction occurs in this nucleophilic acyl subtitution reaction
Explanation:
Sodium ethoxide in ethanol gives nucleophilic acyl substitution reaction with ethyl-2-methylpropanoate.
Here ethoxide group replaces an ethoxide group from ester through addition-ellimination pathway.
So, ultimately, the product of this reaction is identical with reactant i.e. ethyl-2-methylpropanoate is reproduced.
Hence one might observe no change during reaction as product and reactant of this reaction are same.
Mechanistic pathway has been shown below.
Answer: B. Adding more protons to a positively charged body until the number of protons matches the number of electrons
Explanation:
took test got it right
Since
potassium and phosphate is what we are to find for and they are both found in
the potassium phosphate solution, therefore we solve for this one first on the
basis of the phosphate.
The formula
for finding the volume given the concentration and number of moles is:
Volume =
number of moles / concentration in Molarity
Volume
potassium phosphate required = 30 mmol phosphate / (3 mmol / mL)
<u>Volume
potassium phosphate required = 10 mL</u>
This would
also contain potassium in amounts of:
Amount of
potassium in potassium phosphate = 10 mL (4.4 meg / mL)
Amount of
potassium in potassium phosphate = 44 meg
Therefore
the potassium chloride required is:
Volume of
potassium chloride = (80 meg – 44 meg) / (2 meg / mL)
<span><u>Volume of
potassium chloride = 72 mL</u></span>
Boron fluoride. Since Boron has a 3+ charge, and Fluorine has a 1-, you need 3 atoms of Fluorine and 1 of Boron.